Data-driven prognostics with low-fidelity physical information for digital twin: physics-informed neural network

被引:0
|
作者
Seokgoo Kim
Joo-Ho Choi
Nam Ho Kim
机构
[1] University of Florida,Department of Mechanical and Aerospace Engineering
[2] Korea Aerospace University,Department of Aerospace and Mechanical Engineering
关键词
Physics-informed neural network; Prognostics; Uncertainty quantification; Remaining useful life;
D O I
暂无
中图分类号
学科分类号
摘要
In the absence of a high-fidelity physics-based prognostics model, data-driven prognostics methods are widely adopted. In practice, however, data-driven approaches often suffer from insufficient training data, which causes large training uncertainty that hinders the Digital twin (DT)-based decision-making. In such a case, the integration of low-fidelity physics with a data-driven method is highly demanded. This paper introduces physics-informed neural network (PINN)-based prognostics that can utilize low-fidelity physics information, such as monotonicity or the sign of curvature. Low-fidelity physics information is included as a constraint during the optimization process to reduce the training uncertainty in the neural network model by preventing unrealistic predictions. The proposed method is applied to two case studies to demonstrate the effect of reducing the prediction uncertainty and the robustness to the variability in test data. The two case studies show that PINN-based prognostics can successfully reduce the prediction uncertainty and yield more robust prognostics performance than the ordinary neural network.
引用
收藏
相关论文
共 50 条
  • [41] Structural Digital Twin of Concrete Infrastructure Powered with Physics-Informed Neural Networks
    Radbakhsh, Soheil Heidarian
    Nik-Bakht, Mazdak
    Zandi, Kamyab
    SMART & SUSTAINABLE INFRASTRUCTURE: BUILDING A GREENER TOMORROW, ISSSI 2023, 2024, 48 : 1101 - 1113
  • [42] Physics-Informed, Data-Driven Model for Atmospheric Corrosion of Carbon Steel Using Bayesian Network
    Choi, Taesu
    Lee, Dooyoul
    MATERIALS, 2023, 16 (15)
  • [43] A physics-informed data-driven approach for forecasting bifurcations in dynamical systems
    Perez, Jesus Garcia
    Sanches, Leonardo
    Ghadami, Amin
    Michon, Guilhem
    Epureanu, Bogdan I.
    NONLINEAR DYNAMICS, 2023, 111 (13) : 11773 - 11789
  • [44] Regulating the development of accurate data-driven physics-informed deformation models
    Newman, Will
    Ghaboussi, Jamshid
    Insana, Michael
    MACHINE LEARNING-SCIENCE AND TECHNOLOGY, 2024, 5 (03):
  • [45] Physics-informed Data-driven Communication Performance Prediction for Underwater Vehicles
    Chitre, Mandar
    Li Kexin
    2022 SIXTH UNDERWATER COMMUNICATIONS AND NETWORKING CONFERENCE (UCOMMS), 2022,
  • [46] Physics-Informed Data-Driven Modeling for Engine Volumetric Efficiency Estimation
    Li, Qian
    Guo, Fan
    Song, Kang
    Xie, Hui
    Zhou, Shengkai
    Sang, Hailang
    IFAC PAPERSONLINE, 2024, 58 (29): : 403 - 408
  • [47] Physics-informed data-driven model for fluid flow in porous media
    Kazemi, Mohammad
    Takbiri-Borujeni, Ali
    Takbiri, Sam
    Kazemi, Arefeh
    COMPUTERS & FLUIDS, 2023, 264
  • [48] A physics-informed data-driven approach for forecasting bifurcations in dynamical systems
    Jesús García Pérez
    Leonardo Sanches
    Amin Ghadami
    Guilhem Michon
    Bogdan I. Epureanu
    Nonlinear Dynamics, 2023, 111 : 11773 - 11789
  • [49] Physics-informed optimization for a data-driven approach in landslide susceptibility evaluation
    Liu, Songlin
    Wang, Luqi
    Zhang, Wengang
    Sun, Weixin
    Wang, Yunhao
    Liu, Jianping
    JOURNAL OF ROCK MECHANICS AND GEOTECHNICAL ENGINEERING, 2024, 16 (08) : 3192 - 3205
  • [50] Multifidelity deep operator networks for data-driven and physics-informed problems
    Howard A.A.
    Perego M.
    Karniadakis G.E.
    Stinis P.
    Journal of Computational Physics, 2023, 493