Convergence of supermemory gradient method

被引:2
|
作者
Shi Z.-J. [1 ,2 ,3 ,4 ]
Shen J. [1 ,4 ]
机构
[1] Department of Computer and Information Science, University of Michigan, Dearborn
[2] College of Operations Reaserch and Management, Qufu Normal University, Rizhao
[3] Department of Computer and Information Science, University of Michigan-Dearborn, Michigan
来源
J. Appl. Math. Comp. | 2007年 / 1-2卷 / 367-376期
基金
美国国家科学基金会;
关键词
Global convergence; Supermemory gradient method; Unconstrained optimization;
D O I
10.1007/BF02832325
中图分类号
学科分类号
摘要
In this paper we consider the global convergence of a new supermemory gradient method for unconstrained optimization problems. New trust region radius is proposed to make the new method converge stably and averagely, and it will be suitable to solve large scale minimization problems. Some global convergence results are obtained under some mild conditions. Numerical results show that this new method is effective and stable in practical computation. © 2007 Korean Society for Computational & Applied Mathematics and Korean SIGCAM.
引用
收藏
页码:367 / 376
页数:9
相关论文
共 50 条
  • [31] On the convergence rate of scaled gradient projection method
    Yan, Xihong
    Wang, Kai
    He, Hongjin
    OPTIMIZATION, 2018, 67 (09) : 1365 - 1376
  • [32] Global Convergence of a Nonlinear Conjugate Gradient Method
    Liu Jin-kui
    Zou Li-min
    Song Xiao-qian
    MATHEMATICAL PROBLEMS IN ENGINEERING, 2011, 2011
  • [33] ON THE CONVERGENCE OF THE GRADIENT-METHOD OF LIMITING OPTIMIZATION
    IVANOV, SL
    USSR COMPUTATIONAL MATHEMATICS AND MATHEMATICAL PHYSICS, 1982, 22 (04): : 235 - 238
  • [34] Global convergence of a modified conjugate gradient method
    Xuesha Wu
    Journal of Inequalities and Applications, 2014
  • [35] A CONVERGENCE THEOREM OF ROSEN GRADIENT PROJECTION METHOD
    DU, DZ
    ZHANG, XS
    MATHEMATICAL PROGRAMMING, 1986, 36 (02) : 135 - 144
  • [36] Global convergence of a modified conjugate gradient method
    Wu, Xuesha
    JOURNAL OF INEQUALITIES AND APPLICATIONS, 2014,
  • [37] Convergence property and modifications of a memory gradient method
    Shi, ZJ
    Shen, J
    ASIA-PACIFIC JOURNAL OF OPERATIONAL RESEARCH, 2005, 22 (04) : 463 - 477
  • [38] STRONG CONVERGENCE FOR THE PROXIMAL-GRADIENT METHOD
    Wang, Yamin
    Xu, Hong-Kun
    JOURNAL OF NONLINEAR AND CONVEX ANALYSIS, 2014, 15 (03) : 581 - 593
  • [39] New results on the convergence of the conjugate gradient method
    Bouyouli, R.
    Meurant, G.
    Smoch, L.
    Sadok, H.
    NUMERICAL LINEAR ALGEBRA WITH APPLICATIONS, 2009, 16 (03) : 223 - 236
  • [40] Convergence of approximated gradient method for Elman network
    Xu, Dongpo
    Li, Zhengxue
    Wu, Wei
    NEURAL NETWORK WORLD, 2008, 18 (03) : 171 - 180