Convergence of supermemory gradient method

被引:2
|
作者
Shi Z.-J. [1 ,2 ,3 ,4 ]
Shen J. [1 ,4 ]
机构
[1] Department of Computer and Information Science, University of Michigan, Dearborn
[2] College of Operations Reaserch and Management, Qufu Normal University, Rizhao
[3] Department of Computer and Information Science, University of Michigan-Dearborn, Michigan
来源
J. Appl. Math. Comp. | 2007年 / 1-2卷 / 367-376期
基金
美国国家科学基金会;
关键词
Global convergence; Supermemory gradient method; Unconstrained optimization;
D O I
10.1007/BF02832325
中图分类号
学科分类号
摘要
In this paper we consider the global convergence of a new supermemory gradient method for unconstrained optimization problems. New trust region radius is proposed to make the new method converge stably and averagely, and it will be suitable to solve large scale minimization problems. Some global convergence results are obtained under some mild conditions. Numerical results show that this new method is effective and stable in practical computation. © 2007 Korean Society for Computational & Applied Mathematics and Korean SIGCAM.
引用
收藏
页码:367 / 376
页数:9
相关论文
共 50 条
  • [1] A New Supermemory Gradient Method for Unconstrained Optimization
    Zheng, Yue
    Liu, Huanbin
    Liu, June
    ADVANCING KNOWLEDGE DISCOVERY AND DATA MINING TECHNOLOGIES, PROCEEDINGS, 2009, : 177 - 179
  • [2] Supermemory gradient method for unconstrained optimization problem
    Shi, Zhenjun
    Gongcheng Shuxue Xuebao/Chinese Journal of Engineering Mathematics, 2000, 17 (02): : 99 - 104
  • [3] A new supermemory gradient method for unconstrained optimization problems
    Yi-gui Ou
    Guan-shu Wang
    Optimization Letters, 2012, 6 : 975 - 992
  • [4] A new supermemory gradient method for unconstrained optimization problems
    Ou, Yi-gui
    Wang, Guan-shu
    OPTIMIZATION LETTERS, 2012, 6 (05) : 975 - 992
  • [5] A New Supermemory Gradient Method without Line Search for Unconstrained Optimization
    Liu, June
    Liu, Huanbin
    Zheng, Yue
    SIXTH INTERNATIONAL SYMPOSIUM ON NEURAL NETWORKS (ISNN 2009), 2009, 56 : 641 - 647
  • [6] A new class of supermemory gradient methods
    Shi, Zhen-Jun
    Shen, Jie
    APPLIED MATHEMATICS AND COMPUTATION, 2006, 183 (02) : 748 - 760
  • [7] A nonmonotone supermemory gradient algorithm for unconstrained optimization
    Ou Y.
    Liu Y.
    Ou, Y. (ouyigui@tom.com), 1600, Springer Verlag (46): : 215 - 235
  • [8] A family of supermemory gradient projection methods for constrained optimization
    Wang, YJ
    Wang, CY
    Xiu, NH
    OPTIMIZATION, 2002, 51 (06) : 889 - 905
  • [9] A SUPERMEMORY GRADIENT PROJECTION ALGORITHM FOR OPTIMIZATION PROBLEM WITH NONLINEAR CONSTRAINTS
    高自友
    贺国平
    Acta Mathematicae Applicatae Sinica(English Series), 1992, (04) : 323 - 332
  • [10] Supermemory gradient methods for monotone nonlinear equations with convex constraints
    Ou, Yigui
    Liu, Yuanwen
    COMPUTATIONAL & APPLIED MATHEMATICS, 2017, 36 (01): : 259 - 279