Rotorcraft aeroelastic stability using robust analysis

被引:0
|
作者
Quaranta G. [1 ]
Tamer A. [1 ]
Muscarello V. [1 ]
Masarati P. [1 ]
Gennaretti M. [2 ]
Serafini J. [2 ]
Colella M.M. [2 ]
机构
[1] Dipartimento di Scienze e Tecnologie Aerospaziali, Politecnico di Milano, Via La Masa 34, Milano
[2] Dipartimento di Ingegneria, Università Roma Tre, via della Vasca Navale 79, Roma
关键词
Robust stability; Rotorcraft aeroelasticity; Rotorcraft-pilot couplings;
D O I
10.1007/s13272-013-0082-z
中图分类号
学科分类号
摘要
This paper discusses the impact of different models of aerodynamic loads on rotorcraft-pilot couplings stability using a robust stability analysis approach. The aeroelasticity of the main rotor of a helicopter is formulated using aerodynamic models based on the blade element/momentum theory and boundary element method coupled to a finite element model of the blade. The resulting linearized models are used to determine stability limits according to the generalized Nyquist criterion, associated with the accelerations of the pilot’s seat caused by the involuntary action of the pilot on the control inceptors. The resulting stability curves are discussed considering examples of involuntary pilot transfer functions from the literature. © Deutsches Zentrum für Luft- und Raumfahrt e.V. 2013
引用
收藏
页码:29 / 39
页数:10
相关论文
共 50 条
  • [31] ROTORCRAFT AEROELASTIC TESTING IN THE LANGLEY TRANSONIC DYNAMICS TUNNEL
    YEAGER, WT
    MIRICK, PH
    HAMOUDA, MNH
    WILBUR, ML
    SINGLETON, JD
    WILKIE, WK
    JOURNAL OF THE AMERICAN HELICOPTER SOCIETY, 1993, 38 (03) : 73 - 82
  • [32] On Tracking Aeroelastic Modes in Stability Analysis Using Left and Right Eigenvectors
    Hang, Xiaochen
    Fei, Qingguo
    Su, Weihua
    AIAA JOURNAL, 2019, 57 (10) : 4447 - 4457
  • [33] Stability analysis of aeroelastic systems based on aeroelastic FRF and condition number
    Roknizadeh, A. S.
    Nobari, A. S.
    Mohagheghi, M.
    Shahverdi, H.
    AIRCRAFT ENGINEERING AND AEROSPACE TECHNOLOGY, 2012, 84 (05): : 299 - 310
  • [34] Nonlinear Aeroelastic Simulations and Stability Analysis of the Pazy Wing Aeroelastic Benchmark
    Hilger, Jonathan
    Ritter, Markus Raimund
    AEROSPACE, 2021, 8 (10)
  • [35] Using robust stability analysis theorems for robust controller design
    Ngamsom, P
    Hoberock, LL
    JOURNAL OF DYNAMIC SYSTEMS MEASUREMENT AND CONTROL-TRANSACTIONS OF THE ASME, 2003, 125 (04): : 669 - 671
  • [36] UAV Rotorcraft in Compliant Contact: Stability Analysis and Simulation
    Pounds, Paul E. I.
    Dollar, Aaron M.
    2011 IEEE/RSJ INTERNATIONAL CONFERENCE ON INTELLIGENT ROBOTS AND SYSTEMS, 2011, : 2660 - 2667
  • [37] Rotorcraft stability analysis using Lyapunov characteristic exponents estimated from multibody dynamics
    Cassoni G.
    Cocco A.
    Tamer A.
    Zanoni A.
    Masarati P.
    CEAS Aeronautical Journal, 2024, 15 (03) : 703 - 719
  • [38] Nonlinear Robust Approaches to Study Stability and Postcritical Behavior of an Aeroelastic Plant
    Iannelli, Andrea
    Marcos, Andres
    Lowenberg, Mark
    IEEE TRANSACTIONS ON CONTROL SYSTEMS TECHNOLOGY, 2019, 27 (02) : 703 - 716
  • [39] Nonlinear Identification Using Polynomial NARMAX Model and a Stability Analysis of an Aeroelastic System
    Barbosa, Raphaela C. M. G.
    Goes, Luiz C. S.
    Nabarrete, Airton
    Balthazar, Jose M.
    Zuniga, David F. C.
    PROCEEDINGS OF DINAME 2017, 2019, : 97 - 109
  • [40] NOTES REGARDING FUNDAMENTAL UNDERSTANDINGS OF ROTORCRAFT AEROELASTIC INSTABILITY.
    Bielawa, Richard L.
    Journal of the American Helicopter Society, 1987, 32 (04) : 4 - 15