On the Gauss sums and generalized Bernoulli numbers

被引:0
|
作者
H. Liu
J. Gao
机构
[1] Northwest University,
[2] Xi’an Jiaotong University,undefined
来源
关键词
Asymptotic Formula; Bernoulli Polynomial; Dirichlet Character; Analytic Number Theory; Primitive Character;
D O I
暂无
中图分类号
学科分类号
摘要
Using the properties of primitive characters, Gauss sums, and the Ramanujan sum, we study two hybrid mean values of Gauss sums and generalized Bernoulli numbers and give two asymptotic formulas.
引用
收藏
页码:971 / 978
页数:7
相关论文
共 50 条
  • [31] Sums of Generalized Octahedral Numbers
    Ponomarenko, Vadim
    AMERICAN MATHEMATICAL MONTHLY, 2022, 129 (07): : 677 - 677
  • [32] Bernoulli numbers and certain convolution sums with divisor functions
    Kim, Daeyeoul
    Kim, Aeran
    Ikikardes, Nazli Yildiz
    ADVANCES IN DIFFERENCE EQUATIONS, 2013,
  • [33] Sums of products of two q-Bernoulli numbers
    Satoh, J
    JOURNAL OF NUMBER THEORY, 1999, 74 (02) : 173 - 180
  • [34] Generalized Bernoulli Polynomials and Numbers, Revisited
    Elezovic, Neven
    MEDITERRANEAN JOURNAL OF MATHEMATICS, 2016, 13 (01) : 141 - 151
  • [35] Bernoulli numbers and certain convolution sums with divisor functions
    Daeyeoul Kim
    Aeran Kim
    Nazli Yildiz Ikikardes
    Advances in Difference Equations, 2013
  • [36] Generalized Bernoulli Polynomials and Numbers, Revisited
    Neven Elezović
    Mediterranean Journal of Mathematics, 2016, 13 : 141 - 151
  • [37] On higher order generalized Bernoulli numbers
    Jang, YH
    Kim, DS
    APPLIED MATHEMATICS AND COMPUTATION, 2003, 137 (2-3) : 387 - 398
  • [38] New congruences on multiple harmonic sums and Bernoulli numbers
    Wang, Liuquan
    PUBLICATIONES MATHEMATICAE-DEBRECEN, 2020, 97 (1-2): : 161 - 180
  • [39] EVALUATION OF SUMS OF CONVOLVED POWERS USING BERNOULLI NUMBERS
    NEUMAN, CP
    SCHONBACH, DI
    SIAM REVIEW, 1977, 19 (01) : 90 - 99
  • [40] Generalized Fibonacci numbers and Bernoulli polynomials
    Shannon, Anthony G.
    Deveci, Omur
    Erdag, Ozgur
    NOTES ON NUMBER THEORY AND DISCRETE MATHEMATICS, 2019, 25 (01) : 193 - 198