Sparse Output Coding for Scalable Visual Recognition

被引:0
|
作者
Bin Zhao
Eric P. Xing
机构
[1] Carnegie Mellon University,School of Computer Science
来源
关键词
Scalable classification; Output coding; Probabilistic decoding; Object recognition; Scene recognition;
D O I
暂无
中图分类号
学科分类号
摘要
Many vision tasks require a multi-class classifier to discriminate multiple categories, on the order of hundreds or thousands. In this paper, we propose sparse output coding, a principled way for large-scale multi-class classification, by turning high-cardinality multi-class categorization into a bit-by-bit decoding problem. Specifically, sparse output coding is composed of two steps: efficient coding matrix learning with scalability to thousands of classes, and probabilistic decoding. Empirical results on object recognition and scene classification demonstrate the effectiveness of our proposed approach.
引用
收藏
页码:60 / 75
页数:15
相关论文
共 50 条
  • [1] Sparse Output Coding for Scalable Visual Recognition
    Zhao, Bin
    Xing, Eric P.
    INTERNATIONAL JOURNAL OF COMPUTER VISION, 2016, 119 (01) : 60 - 75
  • [2] Sparse Output Coding for Large-Scale Visual Recognition
    Zhao, Bin
    Xing, Eric P.
    2013 IEEE CONFERENCE ON COMPUTER VISION AND PATTERN RECOGNITION (CVPR), 2013, : 3350 - 3357
  • [3] Decoupling Sparse Coding with Fusion of Fisher Vectors and Scalable SVMs for Large-scale Visual Recognition
    Ji, Zhengping
    2013 IEEE CONFERENCE ON COMPUTER VISION AND PATTERN RECOGNITION WORKSHOPS (CVPRW), 2013, : 450 - 457
  • [4] DATA DRIVEN CONVOLUTIONAL SPARSE CODING FOR VISUAL RECOGNITION
    Zeng, Yijie
    Chen, Jichao
    Huang, Guang-Bin
    2018 IEEE INTERNATIONAL CONFERENCE ON ACOUSTICS, SPEECH AND SIGNAL PROCESSING (ICASSP), 2018, : 2736 - 2740
  • [5] Sparse Spatial Coding: A Novel Approach to Visual Recognition
    Oliveira, Gabriel Leivas
    Nascimento, Erickson R.
    Vieira, Antonio Wilson
    Montenegro Campos, Mario Fernando
    IEEE TRANSACTIONS ON IMAGE PROCESSING, 2014, 23 (06) : 2719 - 2731
  • [6] Scalable Online Convolutional Sparse Coding
    Wang, Yaqing
    Yao, Quanming
    Kwok, James T.
    Ni, Lionel M.
    IEEE TRANSACTIONS ON IMAGE PROCESSING, 2018, 27 (10) : 4850 - 4859
  • [7] Sparse Coding of Visual Context
    Miao, Jun
    Qing, Laiyun
    Duan, Lijuan
    Chen, Xilin
    Gao, Wen
    ADVANCES IN COGNITIVE NEURODYNAMICS, PROCEEDINGS, 2008, : 891 - +
  • [8] SPARSE CODING FOR SPEECH RECOGNITION
    Sivaram, G. S. V. S.
    Nemala, Sridhar Krishna
    Elhilali, Mounya
    Trac D. Tran
    Hermansky, Hynek
    2010 IEEE INTERNATIONAL CONFERENCE ON ACOUSTICS, SPEECH, AND SIGNAL PROCESSING, 2010, : 4346 - 4349
  • [9] Decoupling sparse coding of SIFT descriptors for large-scale visual recognition
    Ji, Zhengping
    Theiler, James
    Chartrand, Rick
    Kenyon, Garrett
    Brumby, Steven P.
    INDEPENDENT COMPONENT ANALYSES, COMPRESSIVE SAMPLING, WAVELETS, NEURAL NET, BIOSYSTEMS, AND NANOENGINEERING XI, 2013, 8750
  • [10] Scalable image coding based on sparse decomposition
    Gan, Tao
    He, Yan-Min
    Tien Tzu Hsueh Pao/Acta Electronica Sinica, 2010, 38 (01): : 156 - 160