Constructing Entanglement Witnesses for Infinite-Dimensional Systems

被引:0
|
作者
Jinchuan Hou
Wenli Wang
机构
[1] Taiyuan University of Technology,Department of Mathematics
关键词
Infinite-dimensional systems; Entanglement states; PPT states; Entanglement witnesses;
D O I
暂无
中图分类号
学科分类号
摘要
We generalize the results in Yu and Liu (Phys. Rev. Lett. 95, 150504, 2005) and Hou and Guo (Int. J. Theor. Phys. 50, 1245–1254, 2011) to infinite-dimensional systems and answer a problem raised in the second paper. Consider a bipartite system H ⊗ K with dimH = dimK = ∞. We show that (1) for any orthonormal sequences{Ek}k=1∞\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$\{E_{k}\}_{k = 1}^{\infty }$\end{document} and{Fk}k=1∞\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$\{F_{k}\}_{k = 1}^{\infty }$\end{document} consist of observables respectively inC2(H)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$\mathcal {C}_{2}(H)$\end{document} andC2(K)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$\mathcal {C}_{2}(K)$\end{document}, if∑kEk⊗Fk\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}${\sum }_{k} E_{k} \otimes F_{k}$\end{document} converges under the weak operator topology and ifW=I-∑kEk⊗Fk\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$W=I-{\sum }_{k} E_{k}\otimes F_{k}$\end{document} is not positive, then W is a decomposable entanglement witness; (2) every state ρ of system H ⊗ K has a Schmidt decompositionρ=∑kδkEk⊗Fk\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$\rho = {\sum }_{k} \delta _{k} E_{k} \otimes F_{k}$\end{document} with {Ek} and {Fk} orthonormal sequences of observables.
引用
收藏
页码:1269 / 1281
页数:12
相关论文
共 50 条
  • [31] Robust Regulation of Infinite-Dimensional Systems
    Pohjolainen, Seppo
    2013 18TH INTERNATIONAL CONFERENCE ON METHODS AND MODELS IN AUTOMATION AND ROBOTICS (MMAR), 2013, : 723 - 723
  • [32] ABSORBING SYSTEMS IN INFINITE-DIMENSIONAL MANIFOLDS
    BAARS, J
    GLADDINES, H
    VANMILL, J
    TOPOLOGY AND ITS APPLICATIONS, 1993, 50 (02) : 147 - 182
  • [33] HOMOCLINIC STRUCTURES IN INFINITE-DIMENSIONAL SYSTEMS
    LERMAN, LM
    SHILNIKOV, LP
    SIBERIAN MATHEMATICAL JOURNAL, 1988, 29 (03) : 408 - 417
  • [34] HYPERBOLICITY OF INFINITE-DIMENSIONAL DRIFT SYSTEMS
    AFRAIMOVICH, VS
    PESIN, YB
    NONLINEARITY, 1990, 3 (01) : 1 - 19
  • [35] Quantifying coherence in infinite-dimensional systems
    Zhang, Yu-Ran
    Shao, Lian-He
    Li, Yongming
    Fan, Heng
    PHYSICAL REVIEW A, 2016, 93 (01)
  • [36] ON THE STABILITY UNIFORMITY OF INFINITE-DIMENSIONAL SYSTEMS
    ZWART, H
    YAMAMOTO, Y
    GOTOH, Y
    LECTURE NOTES IN CONTROL AND INFORMATION SCIENCES, 1993, 185 : 401 - 409
  • [37] Stability of switching infinite-dimensional systems
    Sasane, A
    AUTOMATICA, 2005, 41 (01) : 75 - 78
  • [38] ADAPTIVE STABILIZATION OF INFINITE-DIMENSIONAL SYSTEMS
    LOGEMANN, H
    MARTENSSON, B
    IEEE TRANSACTIONS ON AUTOMATIC CONTROL, 1992, 37 (12) : 1869 - 1883
  • [39] Extremum seeking for infinite-dimensional systems
    Oliveira, Tiago Roux
    Krstic, Miroslav
    ANNUAL REVIEWS IN CONTROL, 2023, 56
  • [40] Transfer functions for infinite-dimensional systems
    Zwart, H
    SYSTEMS & CONTROL LETTERS, 2004, 52 (3-4) : 247 - 255