Constructing Entanglement Witnesses for Infinite-Dimensional Systems

被引:0
|
作者
Jinchuan Hou
Wenli Wang
机构
[1] Taiyuan University of Technology,Department of Mathematics
关键词
Infinite-dimensional systems; Entanglement states; PPT states; Entanglement witnesses;
D O I
暂无
中图分类号
学科分类号
摘要
We generalize the results in Yu and Liu (Phys. Rev. Lett. 95, 150504, 2005) and Hou and Guo (Int. J. Theor. Phys. 50, 1245–1254, 2011) to infinite-dimensional systems and answer a problem raised in the second paper. Consider a bipartite system H ⊗ K with dimH = dimK = ∞. We show that (1) for any orthonormal sequences{Ek}k=1∞\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$\{E_{k}\}_{k = 1}^{\infty }$\end{document} and{Fk}k=1∞\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$\{F_{k}\}_{k = 1}^{\infty }$\end{document} consist of observables respectively inC2(H)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$\mathcal {C}_{2}(H)$\end{document} andC2(K)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$\mathcal {C}_{2}(K)$\end{document}, if∑kEk⊗Fk\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}${\sum }_{k} E_{k} \otimes F_{k}$\end{document} converges under the weak operator topology and ifW=I-∑kEk⊗Fk\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$W=I-{\sum }_{k} E_{k}\otimes F_{k}$\end{document} is not positive, then W is a decomposable entanglement witness; (2) every state ρ of system H ⊗ K has a Schmidt decompositionρ=∑kδkEk⊗Fk\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$\rho = {\sum }_{k} \delta _{k} E_{k} \otimes F_{k}$\end{document} with {Ek} and {Fk} orthonormal sequences of observables.
引用
收藏
页码:1269 / 1281
页数:12
相关论文
共 50 条
  • [1] Constructing Entanglement Witnesses for Infinite-Dimensional Systems
    Hou, Jinchuan
    Wang, Wenli
    INTERNATIONAL JOURNAL OF THEORETICAL PHYSICS, 2019, 58 (04) : 1269 - 1281
  • [2] Constructing entanglement witnesses for infinite-dimensional systems
    Hou, Jinchuan
    Qi, Xiaofei
    PHYSICAL REVIEW A, 2010, 81 (06):
  • [3] Constructing Entanglement Witnesses for States in Infinite-Dimensional Bipartite Quantum Systems
    Jinchuan Hou
    Yu Guo
    International Journal of Theoretical Physics, 2011, 50 : 1245 - 1254
  • [4] Constructing Entanglement Witnesses for States in Infinite-Dimensional Bipartite Quantum Systems
    Hou, Jinchuan
    Guo, Yu
    INTERNATIONAL JOURNAL OF THEORETICAL PHYSICS, 2011, 50 (04) : 1245 - 1254
  • [5] Constructing k-Schmidt witnesses for infinite-dimensional systems
    Li, Xin
    Fang, Xiaochun
    LINEAR & MULTILINEAR ALGEBRA, 2015, 63 (04): : 754 - 764
  • [6] On the quantification of entanglement in infinite-dimensional quantum systems
    Eisert, J
    Simon, C
    Plenio, MB
    JOURNAL OF PHYSICS A-MATHEMATICAL AND GENERAL, 2002, 35 (17): : 3911 - 3923
  • [7] Fidelity and entanglement fidelity for infinite-dimensional quantum systems
    Wang, Li
    Hou, Jinchuan
    Qi, Xiaofei
    JOURNAL OF PHYSICS A-MATHEMATICAL AND THEORETICAL, 2014, 47 (33)
  • [8] An entanglement criterion for states in infinite-dimensional multipartite quantum systems
    WANG YinZhu 1
    2 Department of Mathematics
    3 Department of Mathematics
    Chinese Science Bulletin, 2012, 57 (14) : 1643 - 1647
  • [9] Relative Entropy and Relative Entropy of Entanglement for Infinite-Dimensional Systems
    Zhoubo Duan
    Lifang Niu
    Yangyang Wang
    Liang Liu
    International Journal of Theoretical Physics, 2017, 56 : 1929 - 1936
  • [10] Relative Entropy and Relative Entropy of Entanglement for Infinite-Dimensional Systems
    Duan, Zhoubo
    Niu, Lifang
    Wang, Yangyang
    Liu, Liang
    INTERNATIONAL JOURNAL OF THEORETICAL PHYSICS, 2017, 56 (06) : 1929 - 1936