Asymptotic behavior of 2D generalized stochastic Ginzburg-Landau equation with additive noise

被引:0
|
作者
Dong-long Li
Bo-ling Guo
机构
[1] Guangxi University of Technology,Department of Information and Computing Science
[2] Institute of Applied Physics and Computational Mathematics,undefined
来源
关键词
2D generalized stochastic Ginzburg-Landau equation; random dynamical system; random attractor; O175; 35K05;
D O I
暂无
中图分类号
学科分类号
摘要
The 2D generalized stochastic Ginzburg-Landau equation with additive noise is considered. The compactness of the random dynamical system is established with a priori estimate method, showing that the random dynamical system possesses a random attractor in H01.
引用
收藏
页码:945 / 956
页数:11
相关论文
共 50 条
  • [41] Generalized Ginzburg-Landau equation and the properties of superconductors with Ginzburg-Landau parameter κ close to 1
    Yu. N. Ovchinnikov
    Journal of Experimental and Theoretical Physics, 1999, 88 : 398 - 405
  • [42] Asymptotic behavior of three-dimensional Ginzburg-Landau type equation
    Lü, SJ
    Lu, QS
    DYNAMICS OF CONTINUOUS DISCRETE AND IMPULSIVE SYSTEMS-SERIES A-MATHEMATICAL ANALYSIS, 2006, 13 (02): : 209 - 220
  • [43] Generalized Ginzburg-Landau equation and the properties of superconductors with Ginzburg-Landau parameter κ close to 1
    Ovchinnikov, YN
    JOURNAL OF EXPERIMENTAL AND THEORETICAL PHYSICS, 1999, 88 (02) : 398 - 405
  • [44] A stochastic Ginzburg-Landau equation with impulsive effects
    Nguyen Tien Dung
    PHYSICA A-STATISTICAL MECHANICS AND ITS APPLICATIONS, 2013, 392 (09) : 1962 - 1971
  • [45] EXPONENTIAL CONVERGENCE FOR THE 3D STOCHASTIC CUBIC GINZBURG-LANDAU EQUATION WITH DEGENERATE NOISE
    Zheng, Yan
    Huang, Jianhua
    DISCRETE AND CONTINUOUS DYNAMICAL SYSTEMS-SERIES B, 2019, 24 (10): : 5621 - 5632
  • [46] Approximations of the solution of a stochastic Ginzburg-Landau equation
    Breckner, Brigitte E.
    Lisei, Hannelore
    STUDIA UNIVERSITATIS BABES-BOLYAI MATHEMATICA, 2021, 66 (02): : 307 - 319
  • [47] Vortices in a stochastic parabolic Ginzburg-Landau equation
    Chugreeva, Olga
    Melcher, Christof
    STOCHASTICS AND PARTIAL DIFFERENTIAL EQUATIONS-ANALYSIS AND COMPUTATIONS, 2017, 5 (01): : 113 - 143
  • [48] ONSET OF CHAOS IN THE GENERALIZED GINZBURG-LANDAU EQUATION
    MALOMED, BA
    NEPOMNYASHCHY, AA
    PHYSICAL REVIEW A, 1990, 42 (10): : 6238 - 6240
  • [49] Vortices in a stochastic parabolic Ginzburg-Landau equation
    Olga Chugreeva
    Christof Melcher
    Stochastics and Partial Differential Equations: Analysis and Computations, 2017, 5 : 113 - 143
  • [50] The exact solutions of the stochastic Ginzburg-Landau equation
    Mohammed, Wael W.
    Ahmad, Hijaz
    Hamza, Amjad E.
    ALy, E. S.
    El-Morshedy, M.
    Elabbasy, E. M.
    RESULTS IN PHYSICS, 2021, 23