On the oscillation of fourth-order delay differential equations

被引:0
|
作者
Said R. Grace
Jozef Džurina
Irena Jadlovská
Tongxing Li
机构
[1] Cairo University,Department of Engineering Mathematics, Faculty of Engineering
[2] Technical University of Košice,Department of Mathematics and Theoretical Informatics, Faculty of Electrical Engineering and Informatics
[3] Shandong University,School of Control Science and Engineering
关键词
Linear differential equation; Delay; Fourth-order; Noncanonical operator; Oscillation; 34C10; 34K11;
D O I
暂无
中图分类号
学科分类号
摘要
In the paper, fourth-order delay differential equations of the form (r3(r2(r1y′)′)′)′(t)+q(t)y(τ(t))=0\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$ \bigl(r_{3} \bigl(r_{2} \bigl(r_{1}y' \bigr)' \bigr)' \bigr)'(t) + q(t) y \bigl( \tau (t) \bigr) = 0 $$\end{document} under the assumption ∫t0∞dtri(t)<∞,i=1,2,3,\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$ \int _{t_{0}}^{\infty }\frac{\mathrm {d}t}{r_{i}(t)} < \infty , \quad i = 1,2,3, $$\end{document} are investigated. Our newly proposed approach allows us to greatly reduce a number of conditions ensuring that all solutions of the studied equation oscillate. An example is also presented to test the strength and applicability of the results obtained.
引用
收藏
相关论文
共 50 条
  • [21] OSCILLATION OF FOURTH-ORDER QUASILINEAR DIFFERENTIAL EQUATIONS
    Li, Tongxing
    Rogovchenko, Yuriy V.
    Zhang, Chenghui
    MATHEMATICA BOHEMICA, 2015, 140 (04): : 405 - 418
  • [22] Oscillation theorems for fourth-order delay differential equations with a negative middle term
    Dzurina, Jozef
    Jadlovska, Irena
    MATHEMATICAL METHODS IN THE APPLIED SCIENCES, 2017, 40 (18) : 7830 - 7842
  • [23] Oscillation theorems for fourth-order quasi-linear delay differential equations
    Masood, Fahd
    Moaaz, Osama
    Santra, Shyam Sundar
    Fernandez-Gamiz, U.
    El-Metwally, Hamdy A.
    AIMS MATHEMATICS, 2023, 8 (07): : 16291 - 16307
  • [24] On Oscillation of Fourth Order Delay Differential Equations
    Lafci Buyukkahraman, M.
    MALAYSIAN JOURNAL OF MATHEMATICAL SCIENCES, 2020, 14 (02): : 321 - 333
  • [25] Oscillation Theorems for Nonlinear Differential Equations of Fourth-Order
    Moaaz, Osama
    Dassios, Ioannis
    Bazighifan, Omar
    Muhib, Ali
    MATHEMATICS, 2020, 8 (04)
  • [26] An Improved Criterion for the Oscillation of Fourth-Order Differential Equations
    Bazighifan, Omar
    Ruggieri, Marianna
    Scapellato, Andrea
    MATHEMATICS, 2020, 8 (04)
  • [27] Oscillation of certain fourth-order functional differential equations
    Agarwal R.P.
    Grace S.R.
    O'Regan D.
    Ukrainian Mathematical Journal, 2007, 59 (3) : 315 - 342
  • [28] Oscillation criteria for fourth-order functional differential equations
    Grace, Said R.
    Bohner, Martin
    Liu, Ailian
    MATHEMATICA SLOVACA, 2013, 63 (06) : 1303 - 1320
  • [29] Some New Oscillation Results for Fourth-Order Neutral Differential Equations with Delay Argument
    Bazighifan, Omar
    Moaaz, Osama
    El-Nabulsi, Rami Ahmad
    Muhib, Ali
    SYMMETRY-BASEL, 2020, 12 (08):
  • [30] OSCILLATION CRITERIA FOR FOURTH-ORDER NONLINEAR DELAY DYNAMIC EQUATIONS
    Qi, Yunsong
    Yu, Jinwei
    ELECTRONIC JOURNAL OF DIFFERENTIAL EQUATIONS, 2013,