Congruence-simple multiplicatively idempotent semirings

被引:0
|
作者
Tomáš Kepka
Miroslav Korbelář
Günter Landsmann
机构
[1] Charles University,Department of Algebra, Faculty of Mathematics and Physics
[2] Czech Technical University in Prague,Department of Mathematics,Faculty of Electrical Engineering
[3] Johannes Kepler University,Research Institute for Symbolic Computation
来源
Algebra universalis | 2023年 / 84卷
关键词
Congruence; Simple; Semiring; Multiplicatively idempotent; Multiplicatively absorbing; 06A12; 16Y60;
D O I
暂无
中图分类号
学科分类号
摘要
Let S be a multiplicatively idempotent congruence-simple semiring. We show that |S|=2\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$|S|=2$$\end{document} if S has a multiplicatively absorbing element. We also prove that if S is finite then either |S|=2\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$|S|=2$$\end{document} or S≅End(L)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$S\cong {{\,\textrm{End}\,}}(L)$$\end{document} or Sop≅End(L)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$S^{op}\cong {{\,\textrm{End}\,}}(L)$$\end{document} where L is the 2-element semilattice. It seems to be an open question, whether S can be infinite at all.
引用
收藏
相关论文
共 50 条