The Invariance of Subclasses of Biholomorphic Mappings on Bergman-Hartogs Domains

被引:0
|
作者
Yanyan Cui
Hao Liu
机构
[1] Zhoukou Normal University,College of Mathematics and Statistics
[2] Henan University,Institute of Contemporary Mathematics
来源
Acta Mathematica Scientia | 2019年 / 39卷
关键词
Biholomorphic mappings; spirallike mappings; Bergman-Hartogs domain; Roper-Suffridge operator; 32A30; 30C25;
D O I
暂无
中图分类号
学科分类号
摘要
We mainly discuss the invariance of some subclasses of biholomorphic mappings under the generalized Roper-Suffridge operators on Bergman-Hartogs domains which are based on the unit ball Bn. Using the geometric properties and the distortion results of subclasses of biholomorphic mappings, we obtain the geometric characters of almost spirallike mappings of type β and order α,SΩ*(β,A,B)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\alpha, S_\Omega^*(\beta, A, B)$$\end{document}, strong and almost spirallike mappings of type β and order α maintained under the generalized Roper-Suffridge operators on Bergman-Hartogs domains. Sequentially, we conclude that the generalized operators and the known operators preserve the same properties under some conditions. The conclusions generalize some known results.
引用
收藏
页码:1103 / 1120
页数:17
相关论文
共 50 条