Empirical likelihood for high-dimensional linear regression models

被引:0
|
作者
Hong Guo
Changliang Zou
Zhaojun Wang
Bin Chen
机构
[1] Nankai University,LPMC and Department of Statistics, School of Mathematical Sciences
[2] Jiangsu Normal University,School of Mathematics and Statistics
来源
Metrika | 2014年 / 77卷
关键词
Asymptotic normality; Coverage accuracy; High-dimensional data; Hotelling’s ; -square statistic; Wilk’s phenomenon; 62G05; 62G10; 62G20;
D O I
暂无
中图分类号
学科分类号
摘要
High-dimensional data are becoming prevalent, and many new methodologies and accompanying theories for high-dimensional data analysis have emerged in response. Empirical likelihood, as a classical nonparametric method of statistical inference, has proved to possess many good features. In this paper, our focus is to investigate the asymptotic behavior of empirical likelihood for regression coefficients in high-dimensional linear models. We give regularity conditions under which the standard normal calibration of empirical likelihood is valid in high dimensions. Both random and fixed designs are considered. Simulation studies are conducted to check the finite sample performance.
引用
收藏
页码:921 / 945
页数:24
相关论文
共 50 条
  • [41] Quasi-likelihood Bridge estimators for high-dimensional generalized linear models
    Cui, Xiaohua
    Chen, Xia
    Yan, Li
    COMMUNICATIONS IN STATISTICS-SIMULATION AND COMPUTATION, 2017, 46 (10) : 8190 - 8204
  • [42] An Improved Forward Regression Variable Selection Algorithm for High-Dimensional Linear Regression Models
    Xie, Yanxi
    Li, Yuewen
    Xia, Zhijie
    Yan, Ruixia
    IEEE ACCESS, 2020, 8 (08): : 129032 - 129042
  • [43] Empirical Bayes inference in sparse high-dimensional generalized linear models
    Tang, Yiqi
    Martin, Ryan
    ELECTRONIC JOURNAL OF STATISTICS, 2024, 18 (02): : 3212 - 3246
  • [44] Empirical Bayes posterior concentration in sparse high-dimensional linear models
    Martin, Ryan
    Mess, Raymond
    Walker, Stephen G.
    BERNOULLI, 2017, 23 (03) : 1822 - 1847
  • [45] Asymptotics for empirical eigenvalue processes in high-dimensional linear factor models
    Horvath, Lajos
    Rice, Gregory
    JOURNAL OF MULTIVARIATE ANALYSIS, 2019, 169 : 138 - 165
  • [46] Two-sample high-dimensional empirical likelihood
    Fang, Jianglin
    Liu, Wanrong
    Lu, Xuewen
    COMMUNICATIONS IN STATISTICS-THEORY AND METHODS, 2017, 46 (13) : 6323 - 6335
  • [47] Block empirical likelihood for longitudinal partially linear regression models
    You, JH
    Chen, GM
    Zhou, Y
    CANADIAN JOURNAL OF STATISTICS-REVUE CANADIENNE DE STATISTIQUE, 2006, 34 (01): : 79 - 96
  • [48] ACCURACY ASSESSMENT FOR HIGH-DIMENSIONAL LINEAR REGRESSION
    Cai, T. Tony
    Guo, Zijian
    ANNALS OF STATISTICS, 2018, 46 (04): : 1807 - 1836
  • [49] Variational Inference in high-dimensional linear regression
    Mukherjee, Sumit
    Sen, Subhabrata
    JOURNAL OF MACHINE LEARNING RESEARCH, 2022, 23
  • [50] Prediction in abundant high-dimensional linear regression
    Cook, R. Dennis
    Forzani, Liliana
    Rothman, Adam J.
    ELECTRONIC JOURNAL OF STATISTICS, 2013, 7 : 3059 - 3088