Empirical likelihood for high-dimensional linear regression models

被引:0
|
作者
Hong Guo
Changliang Zou
Zhaojun Wang
Bin Chen
机构
[1] Nankai University,LPMC and Department of Statistics, School of Mathematical Sciences
[2] Jiangsu Normal University,School of Mathematics and Statistics
来源
Metrika | 2014年 / 77卷
关键词
Asymptotic normality; Coverage accuracy; High-dimensional data; Hotelling’s ; -square statistic; Wilk’s phenomenon; 62G05; 62G10; 62G20;
D O I
暂无
中图分类号
学科分类号
摘要
High-dimensional data are becoming prevalent, and many new methodologies and accompanying theories for high-dimensional data analysis have emerged in response. Empirical likelihood, as a classical nonparametric method of statistical inference, has proved to possess many good features. In this paper, our focus is to investigate the asymptotic behavior of empirical likelihood for regression coefficients in high-dimensional linear models. We give regularity conditions under which the standard normal calibration of empirical likelihood is valid in high dimensions. Both random and fixed designs are considered. Simulation studies are conducted to check the finite sample performance.
引用
收藏
页码:921 / 945
页数:24
相关论文
共 50 条
  • [1] Empirical likelihood for high-dimensional linear regression models
    Guo, Hong
    Zou, Changliang
    Wang, Zhaojun
    Chen, Bin
    METRIKA, 2014, 77 (07) : 921 - 945
  • [2] Penalized empirical likelihood for high-dimensional generalized linear models
    Chen, Xia
    Mao, Liyue
    STATISTICS AND ITS INTERFACE, 2021, 14 (02) : 83 - 94
  • [3] EMPIRICAL LIKELIHOOD RATIO TESTS FOR COEFFICIENTS IN HIGH-DIMENSIONAL HETEROSCEDASTIC LINEAR MODELS
    Wang, Honglang
    Zhong, Ping-Shou
    Cui, Yuehua
    STATISTICA SINICA, 2018, 28 (04) : 2409 - 2433
  • [4] Decorrelated empirical likelihood for generalized linear models with high-dimensional longitudinal data
    Geng, Shuli
    Zhang, Lixin
    STATISTICS & PROBABILITY LETTERS, 2024, 211
  • [5] Penalized empirical likelihood for high-dimensional generalized linear models with longitudinal data
    Chen, Xia
    Tan, Xiaoyan
    Yan, Li
    JOURNAL OF STATISTICAL COMPUTATION AND SIMULATION, 2023, 93 (10) : 1515 - 1531
  • [6] Empirical Likelihood Test for Regression Coefficients in High Dimensional Partially Linear Models
    Yan Liu
    Mingyang Ren
    Sanguo Zhang
    Journal of Systems Science and Complexity, 2021, 34 : 1135 - 1155
  • [7] Empirical Likelihood Test for Regression Coefficients in High Dimensional Partially Linear Models
    LIU Yan
    REN Mingyang
    ZHANG Sanguo
    JournalofSystemsScience&Complexity, 2021, 34 (03) : 1135 - 1155
  • [8] Empirical Likelihood Test for Regression Coefficients in High Dimensional Partially Linear Models
    Liu, Yan
    Ren, Mingyang
    Zhang, Sanguo
    JOURNAL OF SYSTEMS SCIENCE & COMPLEXITY, 2021, 34 (03) : 1135 - 1155
  • [9] Jackknife empirical likelihood test for high-dimensional regression coefficients
    Zang, Yangguang
    Zhang, Sanguo
    Li, Qizhai
    Zhang, Qingzhao
    COMPUTATIONAL STATISTICS & DATA ANALYSIS, 2016, 94 : 302 - 316
  • [10] The likelihood ratio test for high-dimensional linear regression model
    Xie, Junshan
    Xiao, Nannan
    COMMUNICATIONS IN STATISTICS-THEORY AND METHODS, 2017, 46 (17) : 8479 - 8492