Comparison study on the size and phase control of nanocrystalline TiO2 in three Ti–Si oxide structures

被引:2
|
作者
Lu-Yan Wang
Yan-Ping Sun
Bing-She Xu
机构
[1] Taiyuan University of Technology,Chemical Engineering Department
[2] Taiyuan University of Technology,Key Laboratory of Interface and Engineering in Advanced Material, Ministry of Education
来源
关键词
Lattice Strain; SiO2 Content; Pure TiO2; Increase Annealing Temperature; TBOT;
D O I
暂无
中图分类号
学科分类号
摘要
Three types of Ti–Si binary oxides have been prepared by sol-gel processes. The effects of SiO2 addition and annealing temperature on the grain size, phase transition, dispersion, and microstructure of nanocrystalline (nc) TiO2 anatase in the three Ti–Si oxide structures have been comparatively investigated by X-ray diffraction (XRD) analysis and high-resolution transmission electron microscopy (HRTEM). The grain growth and anatase-rutile transformation (ART) of ncTiO2 were found to depend not only on the SiO2 content and annealing temperature, but also on the composite structure. Both the grain growth and the ART of ncTiO2 proved to be significantly inhibited with increasing SiO2 content for all of the Ti–Si samples, but the structure of intimately mixed Ti–Si binary oxide showed the best inhibiting ability under high-temperature annealing. This result might be attributed to variations in the large lattice strains in ncTiO2, which were mainly induced by the substitution of Ti4+ by Si4+. Plausible mechanisms for the grain growth and ART of ncTiO2 are proposed. To inhibit the grain growth of ncTiO2, the addition of 10 and 30 mol% SiO2 proved to be optimal for Ti–Si samples annealed at 773 K and 1273 K, respectively.
引用
收藏
页码:1979 / 1986
页数:7
相关论文
共 50 条
  • [21] Mesoporous structure and phase transition of nanocrystalline TiO2
    Zhang, YH
    Weidenkaff, A
    Reller, A
    MATERIALS LETTERS, 2002, 54 (5-6) : 375 - 381
  • [22] Synthesis and gas phase nitridation of nanocrystalline TiO2
    Mangamma, G.
    Ajikumar, P. K.
    Nithya, R.
    Sairam, T. N.
    Mittal, V. K.
    Kamruddin, M.
    Dash, S.
    Tyagi, A. K.
    JOURNAL OF PHYSICS D-APPLIED PHYSICS, 2007, 40 (15) : 4597 - 4602
  • [23] Size effect on thermal stability of nanocrystalline anatase TiO2
    Wang, Junwei
    Mishra, Ashish Kumar
    Zhao, Qing
    Huang, Liping
    JOURNAL OF PHYSICS D-APPLIED PHYSICS, 2013, 46 (25)
  • [24] Effect of size and shape of nanocrystalline TiO2 on photogenerated charges.: An EPR study
    Dimitrijevic, Nada M.
    Saponjic, Zoran V.
    Rabatic, Bryan M.
    Poluektov, Oleg G.
    Rajh, Tijana
    JOURNAL OF PHYSICAL CHEMISTRY C, 2007, 111 (40): : 14597 - 14601
  • [25] Experimental study of phase equilibria in the MnO-Si2-"TiO2"-"Ti2O3" system
    Kang, YB
    Lee, HG
    ISIJ INTERNATIONAL, 2005, 45 (11) : 1552 - 1560
  • [26] Particle Size Control of Nanocrystalline Anatase TiO2 Synthesized by Hydrolysis of Titanyl Organic Compounds
    Chen, Xiao-Quan
    Shen, Wen-Hao
    Liu, Huan-Bin
    CHEMICAL ENGINEERING & TECHNOLOGY, 2008, 31 (12) : 1730 - 1734
  • [27] Electrocatalytic activity of nanocrystalline TiO2 film modified Ti electrode
    Chu, DB
    Shen, GX
    Zhou, XF
    Lin, CJ
    Lin, HS
    CHEMICAL JOURNAL OF CHINESE UNIVERSITIES-CHINESE, 2002, 23 (04): : 678 - 681
  • [28] Electrocatalytic Activity of Nanocrystalline TiO2 Film Modified Ti Electrode
    Chu, Dao-Bao
    Shen, Guang-Xia
    Zhou, Xing-Fu
    Lin, Chang-Jian
    Lin, Hua-Shui
    Kao Teng Hsueh Hsiao Hua Heush Hsueh Pao/ Chemical Journal of Chinese Universities, 2002, 23 (04):
  • [29] Impact of calcination atmospheres on the physiochemical and photocatalytic properties of nanocrystalline TiO2 and Si-doped TiO2
    Klaysri, Rachan
    Wichaidit, Sopita
    Tubchareon, Tassanee
    Nokjan, Supamas
    Piticharoenphun, Sunthon
    Mekasuwandumrong, Okorn
    Praserthdam, Piyasan
    CERAMICS INTERNATIONAL, 2015, 41 (09) : 11409 - 11417
  • [30] Influences of TiO2 phase structures on the structures and photocatalytic hydrogen production of CuOx/TiO2 photocatalysts
    Liu, Yuanxu
    Wang, Zhonglei
    Huang, Weixin
    APPLIED SURFACE SCIENCE, 2016, 389 : 760 - 767