Bidirectional Multi-scale Deformable Attention for Video Super-Resolution

被引:0
|
作者
Zhenghua Zhou
Boxiang Xue
Hai Wang
Jianwei Zhao
机构
[1] Zhejiang University of Finance and Economics,School of Data Sciences
[2] China Jiliang University,Department of Data Science, College of Sciences
[3] Murdoch University,Discipline of Engineering and Energy
[4] China Jiliang University,College of Information Engineering
来源
关键词
Video super-resolution; Multi-scale deformable convolution; Multi-scale attention; Bidirectional propagation;
D O I
暂无
中图分类号
学科分类号
摘要
Video super-resolution aims to generate a high-resolution video frame from its low-resolution video sequences. Video super-resolution is still a challenging problem due to performing the temporal frame alignment and spatial feature fusion during the process of spatial-temporal modeling. Existing deep learning based methods have limitations in handling accurate alignment and effective fusion of frames with multi-scale feature information. In this paper, we propose Bidirectional Multi-scale Deformable Attention (BMDA) for video Super-Resolution in terms of propagation, alignment and fusion. More specifically, the developed Deformable Alignment Module (DAM) in BMDA contains two kinds of modules: Multi-scale Deformable Convolution Module (MDCM) and Multi-scale Attention Module (MAM). MDCM is leveraged to deal with the offset information in different scales and align adjacent frames at the feature level, improving the robustness of the alignment among adjacent frames. MAM is designed to extract the local and global features of the aligned features for aggregation, such that the feature information compensation between pixels is achieved. Additionally, in order to make full use of shallow features, dense connection structure between each layer is adopted in the framework of bidirectional propagation to achieve better visual performance on video super-resolution. In particular, our proposed BDAM outperforms BasicVSR by up to 1.28dB in PSNR when batch size is set to 2. Experimental results on public video benchmark datasets demonstrate that the proposed method can achieve superior performance on large motion videos as compared with the state-of-the art methods.
引用
收藏
页码:27809 / 27830
页数:21
相关论文
共 50 条
  • [11] Attention-guided video super-resolution with recurrent multi-scale spatial–temporal transformer
    Wei Sun
    Xianguang Kong
    Yanning Zhang
    Complex & Intelligent Systems, 2023, 9 : 3989 - 4002
  • [12] Multi-scale deformable transformer for multi-contrast knee MRI super-resolution
    Zou, Beiji
    Ji, Zexin
    Zhu, Chengzhang
    Dai, Yulan
    Zhang, Wensheng
    Kui, Xiaoyan
    BIOMEDICAL SIGNAL PROCESSING AND CONTROL, 2023, 79
  • [13] Fast Online Video Super-Resolution with Deformable Attention Pyramid
    Fuoli, Dario
    Danelljan, Martin
    Timofte, Radu
    Van Gool, Luc
    2023 IEEE/CVF WINTER CONFERENCE ON APPLICATIONS OF COMPUTER VISION (WACV), 2023, : 1735 - 1744
  • [14] Attention augmented multi-scale network for single image super-resolution
    Xiong, Chengyi
    Shi, Xiaodi
    Gao, Zhirong
    Wang, Ge
    APPLIED INTELLIGENCE, 2021, 51 (02) : 935 - 951
  • [15] Lightweight multi-scale distillation attention network for image super-resolution
    Tang, Yinggan
    Hu, Quanwei
    Bu, Chunning
    KNOWLEDGE-BASED SYSTEMS, 2025, 309
  • [16] A lightweight multi-scale channel attention network for image super-resolution
    Li, Wenbin
    Li, Juefei
    Li, Jinxin
    Huang, Zhiyong
    Zhou, Dengwen
    NEUROCOMPUTING, 2021, 456 : 327 - 337
  • [17] Image super-resolution network based on multi-scale adaptive attention
    Zhou Y.
    Pei S.
    Chen H.
    Xu S.
    Guangxue Jingmi Gongcheng/Optics and Precision Engineering, 2024, 32 (06): : 843 - 856
  • [18] Lightweight multi-scale residual networks with attention for image super-resolution
    Liu, Huan
    Cao, Feilong
    Wen, Chenglin
    Zhang, Qinghua
    KNOWLEDGE-BASED SYSTEMS, 2020, 203
  • [19] Lightweight Multi-Scale Asymmetric Attention Network for Image Super-Resolution
    Zhang, Min
    Wang, Huibin
    Zhang, Zhen
    Chen, Zhe
    Shen, Jie
    MICROMACHINES, 2022, 13 (01)
  • [20] Efficient Multi-Scale Cosine Attention Transformer for Image Super-Resolution
    Chen, Yuzhen
    Wang, Gencheng
    Chen, Rong
    IEEE SIGNAL PROCESSING LETTERS, 2023, 30 : 1442 - 1446