Derivative-free reinforcement learning: a review

被引:0
|
作者
Hong Qian
Yang Yu
机构
[1] Nanjing University,National Key Laboratory for Novel Software Technology
来源
Frontiers of Computer Science | 2021年 / 15卷
关键词
reinforcement learning; derivative-free optimization; neuroevolution reinforcement learning; neural architecture search;
D O I
暂无
中图分类号
学科分类号
摘要
Reinforcement learning is about learning agent models that make the best sequential decisions in unknown environments. In an unknown environment, the agent needs to explore the environment while exploiting the collected information, which usually forms a sophisticated problem to solve. Derivative-free optimization, meanwhile, is capable of solving sophisticated problems. It commonly uses a sampling-and-updating framework to iteratively improve the solution, where exploration and exploitation are also needed to be well balanced. Therefore, derivative-free optimization deals with a similar core issue as reinforcement learning, and has been introduced in reinforcement learning approaches, under the names of learning classifier systems and neuroevolution/evolutionary reinforcement learning. Although such methods have been developed for decades, recently, derivative-free reinforcement learning exhibits attracting increasing attention. However, recent survey on this topic is still lacking. In this article, we summarize methods of derivative-free reinforcement learning to date, and organize the methods in aspects including parameter updating, model selection, exploration, and parallel/distributed methods. Moreover, we discuss some current limitations and possible future directions, hoping that this article could bring more attentions to this topic and serve as a catalyst for developing novel and efficient approaches.
引用
收藏
相关论文
共 50 条
  • [31] DERIVATIVE-FREE DISCRETE GRADIENT METHODS
    Myhr, Hakon Noren
    Eidnes, Solve
    JOURNAL OF COMPUTATIONAL DYNAMICS, 2024, : 256 - 273
  • [32] ZOOpt: a toolbox for derivative-free optimization
    Yu-Ren Liu
    Yi-Qi Hu
    Hong Qian
    Chao Qian
    Yang Yu
    Science China Information Sciences, 2022, 65
  • [33] Derivative-free optimal experimental design
    Heine, T.
    Kawohl, A.
    King, R.
    CHEMICAL ENGINEERING SCIENCE, 2008, 63 (19) : 4873 - 4880
  • [34] Performance analysis of derivative-free filters
    Dunik, Jindrich
    Simandl, Miroslav
    Straka, Ondrej
    Kral, Ladislav
    2005 44th IEEE Conference on Decision and Control & European Control Conference, Vols 1-8, 2005, : 1941 - 1946
  • [35] A derivative-free algorithm for unconstrained optimization
    Peng Y.
    Liu Z.
    Applied Mathematics-A Journal of Chinese Universities, 2005, 20 (4) : 491 - 498
  • [36] A derivative-free Gauss–Newton method
    Coralia Cartis
    Lindon Roberts
    Mathematical Programming Computation, 2019, 11 : 631 - 674
  • [37] Derivative-free superiorization: principle and algorithm
    Censor, Yair
    Garduno, Edgar
    Helou, Elias S.
    Herman, Gabor T.
    NUMERICAL ALGORITHMS, 2021, 88 (01) : 227 - 248
  • [38] Derivative-Free Optimization via Classification
    Yu, Yang
    Qian, Hong
    Hu, Yi-Qi
    THIRTIETH AAAI CONFERENCE ON ARTIFICIAL INTELLIGENCE, 2016, : 2286 - 2292
  • [39] Openly Revisiting Derivative-Free Optimization
    Rapin, Jeremy
    Dorval, Pauline
    Pondard, Jules
    Vasilache, Nicolas
    Cauwet, Marie-Liesse
    Couprie, Camille
    Teytaud, Olivier
    PROCEEDINGS OF THE 2019 GENETIC AND EVOLUTIONARY COMPUTATION CONFERENCE COMPANION (GECCCO'19 COMPANION), 2019, : 267 - 268
  • [40] Derivative-free characterizations of QK spaces
    Wulan, Hasi
    Zhu, Kehe
    JOURNAL OF THE AUSTRALIAN MATHEMATICAL SOCIETY, 2007, 82 : 283 - 295