Emotion Recognition from Electroencephalogram (EEG) Signals Using a Multiple Column Convolutional Neural Network Model

被引:0
|
作者
Jha S.K. [1 ]
Suvvari S. [1 ]
Kumar M. [1 ]
机构
[1] Department of Computer Science and Engineering, National Institute of Technology Patna, Patna
关键词
Attention; Convolution neural network (CNN); Deep learning; EEG; Emotion recognition; GCNN; Multicolumn CNN;
D O I
10.1007/s42979-023-02543-0
中图分类号
学科分类号
摘要
Emotions are vital in human cognition and are essential for human survival. Emotion is often associated with smart decisions, interpersonal behavior, and, to some extent, intellectual cognition. From the recent literature on emotion recognition, we understand that the researchers are showing interest in creating meaningful "emotional" associations between humans and machines; there is a demand for accurate and scalable systems to detect human emotional states, as emotion recognition is needed to understand the mental status of such persons who cannot communicate their emotions, such as disabled people, mentally challenged persons, etc. Therefore, EEG signals provide a non-invasive method to identify the emotions of these disabled humans. The research community has recently been very interested in employing electroencephalography (EEG) for emotion classification since end-users have wearable EEG systems that may offer a portable, cheap, and straightforward technique for identifying emotions. Deep learning models have recently been extensively used to extract characteristics and recognize emotions from EEG recordings. Apart from that, various papers were reviewed in this research. This paper presented a multiple-column CNN network with a leaky ReLU activation function on the EEG brain wave and DEAP datasets. Multiple scalp electrode locations are used to collect EEG signals, and each electrode offers spatially unique data. The network can detect spatial correlations and extract characteristics that depict the spatial distribution of brain activity by employing a multiple-column CNN, which simultaneously processes signals from many channels. This makes it possible for the model to recognize emotions using the spatial information in EEG data. The result analysis was evaluated on different CNN models, and it was observed that an accuracy of 98.10% was achieved on the EEG brainwave dataset and 81% on the DEAP dataset. © 2024, The Author(s), under exclusive licence to Springer Nature Singapore Pte Ltd.
引用
收藏
相关论文
共 50 条
  • [21] Emotion recognition with convolutional neural network and EEG-based EFDMs
    Wang, Fei
    Wu, Shichao
    Zhang, Weiwei
    Xu, Zongfeng
    Zhang, Yahui
    Wu, Chengdong
    Coleman, Sonya
    NEUROPSYCHOLOGIA, 2020, 146
  • [22] Empirical analysis of multiple modalities for emotion recognition using convolutional neural network
    Jaswal R.A.
    Dhingra S.
    Measurement: Sensors, 2023, 26
  • [23] Entropy-Based Emotion Recognition from Multichannel EEG Signals Using Artificial Neural Network
    Aung, Si Thu
    Hassan, Mehedi
    Brady, Mark
    Mannan, Zubaer Ibna
    Azam, Sami
    Karim, Asif
    Zaman, Sadika
    Wongsawat, Yodchanan
    COMPUTATIONAL INTELLIGENCE AND NEUROSCIENCE, 2022, 2022
  • [24] Emotion Recognition Using Electrodermal Activity Signals and Multiscale Deep Convolutional Neural Network
    Nagarajan Ganapathy
    Yedukondala Rao Veeranki
    Himanshu Kumar
    Ramakrishnan Swaminathan
    Journal of Medical Systems, 2021, 45
  • [25] Emotion Recognition Using Electrodermal Activity Signals and Multiscale Deep Convolutional Neural Network
    Ganapathy, Nagarajan
    Veeranki, Yedukondala Rao
    Kumar, Himanshu
    Swaminathan, Ramakrishnan
    JOURNAL OF MEDICAL SYSTEMS, 2021, 45 (04)
  • [26] Imagined character recognition through EEG signals using deep convolutional neural network
    Sadiq Ullah
    Zahid Halim
    Medical & Biological Engineering & Computing, 2021, 59 : 1167 - 1183
  • [27] Imagined character recognition through EEG signals using deep convolutional neural network
    Ullah, Sadiq
    Halim, Zahid
    MEDICAL & BIOLOGICAL ENGINEERING & COMPUTING, 2021, 59 (05) : 1167 - 1183
  • [28] Emotion Recognition Based On Electroencephalogram Signals Using Deep Learning Network
    Wu, Bin
    JOURNAL OF APPLIED SCIENCE AND ENGINEERING, 2023, 27 (01): : 1967 - 1974
  • [29] Emotion recognition from EEG signals using machine learning model
    Akshay, K. R.
    Sundar, Sumod
    Shanir, Muhammed P. P.
    2022 5TH INTERNATIONAL CONFERENCE ON MULTIMEDIA, SIGNAL PROCESSING AND COMMUNICATION TECHNOLOGIES (IMPACT), 2022,
  • [30] EEG emotion recognition using fusion model of graph convolutional neural networks and LSTM
    Yin, Yongqiang
    Zheng, Xiangwei
    Hu, Bin
    Zhang, Yuang
    Cui, Xinchun
    APPLIED SOFT COMPUTING, 2021, 100