Gonality of non-Gorenstein curves of genus five

被引:0
|
作者
Lia Feital
Renato Vidal Martins
机构
[1] CCE,Departamento de Matemática
[2] UFV,Departamento de Matemática
[3] ICEx,undefined
[4] UFMG,undefined
来源
Bulletin of the Brazilian Mathematical Society, New Series | 2014年 / 45卷
关键词
singular curve; non-Gorenstein curve; Max Noether theorem; Primary: 14H20; Secondary: 14H45, 14H51;
D O I
暂无
中图分类号
学科分类号
摘要
We establish sufficient conditions for some curves to be trigonal and derive from them that most of non-Gorenstein curves of genus five are so. Afterwards, we show that the gonality of such a curve ranges from 2 to 5. Gonality is understood within a broader context, i.e., the gd1 may possibly admit a base point and correspond to a torsion free sheaf of rank one instead of a line bundle. This study comes along with a thorough description of possible canonical models and kinds of singularities.
引用
收藏
页码:649 / 670
页数:21
相关论文
共 50 条
  • [22] NONCLASSICAL GORENSTEIN CURVES OF ARITHMETIC GENUS-3 AND GENUS-4
    FREITAS, ES
    STOHR, KO
    MATHEMATISCHE ZEITSCHRIFT, 1995, 218 (04) : 479 - 502
  • [23] Ternary and Quaternary Curves of Small Fixed Genus and Gonality With Many Rational Points
    Faber, Xander
    Grantham, Jon
    EXPERIMENTAL MATHEMATICS, 2023, 32 (02) : 337 - 349
  • [24] Explicit non-Gorenstein R = T via rank bounds I:deformation theory
    Hsu, Catherine
    Wake, Preston
    Wang-Erickson, Carl
    SELECTA MATHEMATICA-NEW SERIES, 2025, 31 (01):
  • [25] POSTULATION AND GONALITY OF PROJECTIVE CURVES
    BALLICO, E
    PROCEEDINGS OF THE KONINKLIJKE NEDERLANDSE AKADEMIE VAN WETENSCHAPPEN SERIES A-MATHEMATICAL SCIENCES, 1989, 92 (04): : 365 - 377
  • [26] The gonality sequence of covering curves
    Keem, Changho
    Martens, Gerriet
    ARCHIV DER MATHEMATIK, 2015, 105 (01) : 33 - 43
  • [27] Gonality of curves on general hypersurfaces
    Bastianelli, Francesco
    Ciliberto, Ciro
    Flamini, Flaminio
    Supino, Paola
    JOURNAL DE MATHEMATIQUES PURES ET APPLIQUEES, 2019, 125 : 94 - 118
  • [28] The gonality sequence of covering curves
    Changho Keem
    Gerriet Martens
    Archiv der Mathematik, 2015, 105 : 33 - 43
  • [29] The gonality of complete intersection curves
    Hotchkiss, James
    Lau, Chung Ching
    Ullery, Brooke
    JOURNAL OF ALGEBRA, 2020, 560 : 579 - 608
  • [30] The gonality of curves on a Hirzebruch surface
    Martens, G
    ARCHIV DER MATHEMATIK, 1996, 67 (04) : 349 - 352