Direct numerical simulation of the turbulent MHD channel flow at low magnetic Reynolds number for electric correlation characteristics

被引:0
|
作者
Zhi Chen
JinBai Zhang
ChunHian Lee
机构
[1] Beijing University of Aeronautics and Astronautics,School of Aeronautic Science and Engineering
关键词
low magnetic Reynolds number assumption; magnetohydrodynamic turbulence; DNS; velocity-electric field correlation; electric-electric field correlation; channel flow;
D O I
暂无
中图分类号
学科分类号
摘要
Direct numerical simulation (DNS) of incompressible magnetohydrodynamic (MHD) turbulent channel flow has been performed under the low magnetic Reynolds number assumption. The velocity-electric field and electric-electric field correlations were studied in the present work for different magnetic field orientations. The Kenjeres-Hanjalic (K-H) model was validated with the DNS data in a term by term manner. The numerical results showed that the K-H model makes good predictions for most components of the velocity-electric field correlations. The mechanisms of turbulence suppression were also analyzed for different magnetic field orientations utilizing the DNS data and the K-H model. The results revealed that the dissipative MHD source term is responsible for the turbulence suppression for the case of streamwise and spanwise magnetic orientation, while the Lorentz force which speeds up the near-wall fluid and decreases the production term is responsible for the turbulence suppression for the case of the wall normal magnetic orientation.
引用
收藏
页码:1901 / 1913
页数:12
相关论文
共 50 条
  • [41] Direct numerical simulation of NACA0012 cascade flow at low Reynolds number
    Zhu, Hai-Tao
    Shan, Peng
    Hangkong Dongli Xuebao/Journal of Aerospace Power, 2013, 28 (02): : 401 - 409
  • [42] Direct numerical simulation of turbulent channel flow with bubbles
    Xu, J
    Dong, SC
    Maxey, MR
    Karniadakis, GE
    CURRENT TRENDS IN SCIENTIFIC COMPUTING, 2003, 329 : 347 - 354
  • [43] Direct numerical simulation of turbulent flow in a wavy channel
    Ohta, T
    Miyake, Y
    Kajishima, T
    JSME INTERNATIONAL JOURNAL SERIES B-FLUIDS AND THERMAL ENGINEERING, 1998, 41 (02) : 447 - 453
  • [44] Numerical simulation of turbulent Taylor-Couette flow between conducting cylinders in an axial magnetic field at low magnetic Reynolds number
    Leng, Xueyuan
    Kolesnikov, Yurii B.
    Krasnov, Dmitry
    Li, Benwen
    PHYSICS OF FLUIDS, 2018, 30 (01)
  • [45] Dynamic state of low-Reynolds-number turbulent channel flow
    Mamori, Hiroya
    Nabae, Yusuke
    Fukuda, Shingo
    Gotoda, Hiroshi
    PHYSICAL REVIEW E, 2023, 108 (02)
  • [46] Turbulent channel flow of generalized Newtonian fluids at a low Reynolds number
    Arosemena, Arturo A.
    Andersson, Helge I.
    Solsvik, Jannike
    JOURNAL OF FLUID MECHANICS, 2021, 908
  • [47] Low-Reynolds-number effects derived from direct numerical simulations of turbulent pipe flow
    Wagner, C
    Hüttl, TJ
    Friedrich, R
    COMPUTERS & FLUIDS, 2001, 30 (05) : 581 - 590
  • [48] Direct numerical simulation of flow-induced vibrations of a wavy cable at a low Reynolds number
    Zhu, Hongbo
    Ping, Huan
    Bao, Yan
    Zhou, Dai
    Huang, Shuai
    Song, Baiyang
    Pan, Shuai
    Shi, Xinyu
    Han, Zhaolong
    APPLIED OCEAN RESEARCH, 2021, 117 (117)
  • [49] Direct numerical simulation of a high-Froude-number turbulent open-channel flow
    Yamamoto, Yoshinobu
    Kunugi, Tomoaki
    PHYSICS OF FLUIDS, 2011, 23 (12)
  • [50] Direct numerical simulation of low-Reynolds-number flow past arrays of rotating spheres
    Zhou, Qiang
    Fan, Liang-Shih
    JOURNAL OF FLUID MECHANICS, 2015, 765 : 396 - 423