On Schwarz-type Smoothers for Saddle Point Problems

被引:0
|
作者
Joachim Schöberl
Walter Zulehner
机构
[1] Johannes Kepler University,Institute of Computational Mathematics
来源
Numerische Mathematik | 2003年 / 95卷
关键词
Fluid Dynamic; Numerical Experiment; Computational Fluid Dynamic; Stokes Equation; Iteration Method;
D O I
暂无
中图分类号
学科分类号
摘要
In this paper we consider additive Schwarz-type iteration methods for saddle point problems as smoothers in a multigrid method. Each iteration step of the additive Schwarz method requires the solutions of several small local saddle point problems. This method can be viewed as an additive version of a (multiplicative) Vanka-type iteration, well-known as a smoother for multigrid methods in computational fluid dynamics. It is shown that, under suitable conditions, the iteration can be interpreted as a symmetric inexact Uzawa method. In the case of symmetric saddle point problems the smoothing property, an important part in a multigrid convergence proof, is analyzed for symmetric inexact Uzawa methods including the special case of the additive Schwarz-type iterations. As an example the theory is applied to the Crouzeix-Raviart mixed finite element for the Stokes equations and some numerical experiments are presented.
引用
收藏
页码:377 / 399
页数:22
相关论文
共 50 条
  • [41] Block Preconditioners for Saddle Point Problems
    Leigh Little
    Yousef Saad
    Numerical Algorithms, 2003, 33 : 367 - 379
  • [42] New preconditioners for saddle point problems
    Pan, JY
    Ng, MK
    Bai, ZZ
    APPLIED MATHEMATICS AND COMPUTATION, 2006, 172 (02) : 762 - 771
  • [43] COMPUTATIONAL TECHNIQUES FOR SADDLE POINT PROBLEMS
    Castillo, Zenaida
    Suarez, Jean
    REVISTA INTERNACIONAL DE METODOS NUMERICOS PARA CALCULO Y DISENO EN INGENIERIA, 2008, 24 (03): : 217 - 226
  • [44] A splitting preconditioner for saddle point problems
    Cao, Yang
    Jiang, Mei-Qun
    Zheng, Ying-Long
    NUMERICAL LINEAR ALGEBRA WITH APPLICATIONS, 2011, 18 (05) : 875 - 895
  • [45] Block preconditioners for saddle point problems
    Little, L
    Saad, Y
    NUMERICAL ALGORITHMS, 2003, 33 (1-4) : 367 - 379
  • [46] A preconditioner for generalized saddle point problems
    Benzi, M
    Golub, GH
    SIAM JOURNAL ON MATRIX ANALYSIS AND APPLICATIONS, 2004, 26 (01) : 20 - 41
  • [47] ON A SPLITTING PRECONDITIONER FOR SADDLE POINT PROBLEMS
    Salkuyeh, Davod Khojasteh
    Abdolmaleki, Maryam
    Karimi, Saeed
    JOURNAL OF APPLIED MATHEMATICS & INFORMATICS, 2018, 36 (5-6): : 459 - 474
  • [48] Schwarz-Type Lemma, Landau-Type Theorem, and Lipschitz-Type Space of Solutions to Inhomogeneous Biharmonic Equations
    Chen, Shaolin
    Li, Peijin
    Wang, Xiantao
    JOURNAL OF GEOMETRIC ANALYSIS, 2019, 29 (03) : 2469 - 2491
  • [49] THE SHSS PRECONDITIONER FOR SADDLE POINT PROBLEMS
    Li, Cuixia
    Wu, Shiliang
    JOURNAL OF APPLIED ANALYSIS AND COMPUTATION, 2023, 13 (06): : 3221 - 3230
  • [50] On an iterative method for saddle point problems
    Tong, ZY
    Sameh, A
    NUMERISCHE MATHEMATIK, 1998, 79 (04) : 643 - 646