A general finite volume scheme for an elliptic-hyperbolic system using a variational approach

被引:0
|
作者
M. R. Laydi
M. Ghilani
机构
[1] Université de Franche-Comté,
[2] LCS URA CNRS 741,undefined
[3] 16,undefined
[4] route de Gray,undefined
[5] 25300 Besançon,undefined
[6] France.,undefined
[7] Université Moulay Ismail,undefined
[8] Faculté des Sciences,undefined
[9] BP 4010,undefined
[10] Beni M'hamed,undefined
[11] 50000 Meknès,undefined
[12] Maroc,undefined
关键词
Key words. Elliptic, hyperbolic, finite volume scheme, finite element scheme, nodal method, variational method.;
D O I
暂无
中图分类号
学科分类号
摘要
We study the convergence of general finite volume schemes for the diphasic flow problem in porous media \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document} $u_t-{\rm div}(u\nabla p)=0$\end{document} and \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document} $\Delta p=0$\end{document} in a bounded domain. A general formula for the numerical flux on a triangular mesh is given. The stability and an estimate of the total variation of the approximate solutions are obtained by means of a variational method; the convergence follows easily for general data.
引用
收藏
页码:630 / 643
页数:13
相关论文
共 50 条
  • [41] Variational approach to N-body interactions in finite volume
    Guo, Peng
    Doring, Michael
    Szczepaniak, Adam P.
    PHYSICAL REVIEW D, 2018, 98 (09)
  • [42] Finite volume methods for elliptic PDE's: A new approach
    Chatzipantelidis, P
    ESAIM-MATHEMATICAL MODELLING AND NUMERICAL ANALYSIS-MODELISATION MATHEMATIQUE ET ANALYSE NUMERIQUE, 2002, 36 (02): : 307 - 324
  • [43] Variational approach to a strictly hyperbolic system of conservation laws with singularity
    He, Jihuan
    Communications in Nonlinear Science and Numerical Simulation, 1998, 3 (03) : 179 - 183
  • [44] Finite volume scheme for solving elliptic boundary value problems on composite grids
    Anthonissen, M.J.H.
    van't Hof, B.
    Reusken, A.A.
    Computing (Vienna/New York), 1998, 61 (04): : 285 - 305
  • [45] A finite volume scheme for solving elliptic boundary value problems on composite grids
    Anthonissen, MJH
    van't Hof, B
    Reusken, AA
    COMPUTING, 1998, 61 (04) : 285 - 305
  • [46] A finite volume scheme for solving elliptic boundary value problems on composite grids
    M. J. H. Anthonissen
    B. van ’t Hof
    A. A. Reusken
    Computing, 1998, 61 : 285 - 305
  • [47] A posteriori error estimates for finite volume approximations of elliptic equations on general surfaces
    Ju, Lili
    Tian, Li
    Wang, Desheng
    COMPUTER METHODS IN APPLIED MECHANICS AND ENGINEERING, 2009, 198 (5-8) : 716 - 726
  • [48] On the finite volume element method for general self-adjoint elliptic problems
    Huang, JG
    Xi, ST
    SIAM JOURNAL ON NUMERICAL ANALYSIS, 1998, 35 (05) : 1762 - 1774
  • [49] CONVERGENCE OF AN UPSTREAM FINITE-VOLUME SCHEME FOR A NONLINEAR HYPERBOLIC EQUATION ON A TRIANGULAR MESH
    CHAMPIER, S
    GALLOUET, T
    HERBIN, R
    NUMERISCHE MATHEMATIK, 1993, 66 (02) : 139 - 157
  • [50] Hyperbolic conservation laws on the sphere. A geometry-compatible finite volume scheme
    Ben-Artzi, Matania
    Falcovitz, Joseph
    LeFloch, Philippe G.
    JOURNAL OF COMPUTATIONAL PHYSICS, 2009, 228 (16) : 5650 - 5668