Equilibrium Configurations for Generalized Frenkel–Kontorova Models on Quasicrystals

被引:0
|
作者
Rodrigo Treviño
机构
[1] University of Maryland,Department of Mathematics
来源
关键词
D O I
暂无
中图分类号
学科分类号
摘要
I study classes of generalized Frenkel–Kontorova models whose potentials are given by almost-periodic functions which are closely related to aperiodic Delone sets of finite local complexity. Since such Delone sets serve as models for quasicrystals, this setup presents Frenkel–Kontorova models for the type of aperiodic crystals which have been discovered since Shechtman’s discovery of quasicrystals. Here I consider models with configurations u:Zr→Rd\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$u:{\mathbb {Z}}^r \rightarrow {\mathbb {R}}^d$$\end{document}, where d is the dimension of the quasicrystal, for any r and d. The almost-periodic functions used for potentials are called pattern-equivariant and I show that if the interactions of the model satisfies a mild C2\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$C^2$$\end{document} requirement, and if the potential satisfies a mild non-degeneracy assumption, then there exist equilibrium configurations of any prescribed rotation rotation number/vector/plane. The assumptions are general enough to satisfy the classical Frenkel–Kontorova models and its multidimensional analoges. The proof uses the idea of the anti-integrable limit.
引用
收藏
页码:1 / 17
页数:16
相关论文
共 50 条
  • [31] The Transport Speed and Optimal Work in Pulsating Frenkel–Kontorova Models
    Braslav Rabar
    Siniša Slijepčević
    Communications in Mathematical Physics, 2019, 371 : 399 - 423
  • [32] Generalized Frenkel-Kontorova model: A diatomic chain in a sinusoidal potential
    Xu, AG
    Wang, GR
    Chen, SG
    Hu, BB
    PHYSICAL REVIEW B, 1998, 58 (02): : 721 - 733
  • [33] THE CLASSICAL STATISTICAL-MECHANICS OF FRENKEL-KONTOROVA MODELS
    MACKAY, RS
    JOURNAL OF STATISTICAL PHYSICS, 1995, 80 (1-2) : 45 - 67
  • [34] Total destruction of invariant tori for the generalized Frenkel-Kontorova model
    Su, Xifeng
    Wang, Lin
    JOURNAL OF MATHEMATICAL PHYSICS, 2012, 53 (02)
  • [35] Fractal spin glass properties of low energy configurations in the Frenkel-Kontorova chain
    Zhirov, OV
    Casati, G
    Shepelyansky, DL
    PHYSICAL REVIEW E, 2002, 65 (02):
  • [36] The Frenkel-Kontorova Model
    Floría, LM
    Baesens, C
    Gómez-Gardeñes, J
    DYNAMICS OF COUPLED MAP LATTICES AND OF RELATED SPATIALLY EXTENDED SYSTEMS, 2005, 671 : 209 - 240
  • [37] Pinning and phonon localization in Frenkel-Kontorova models on quasiperiodic substrates
    van Erp, TS
    Fasolino, A
    Radulescu, O
    Janssen, T
    PHYSICAL REVIEW B, 1999, 60 (09): : 6522 - 6528
  • [38] INTERFACE INTERACTIONS IN ONE-DIMENSIONAL MODELS OF THE FRENKEL KONTOROVA TYPE
    SASAKI, K
    PHYSICA A, 1991, 171 (01): : 80 - 97
  • [39] Emergent friction in two-dimensional Frenkel-Kontorova models
    Norell, Jesper
    Fasolino, Annalisa
    de Wijn, Astrid S.
    PHYSICAL REVIEW E, 2016, 94 (02)
  • [40] HOMOGENIZATION OF ACCELERATED FRENKEL-KONTOROVA MODELS WITH n TYPES OF PARTICLES
    Forcadel, N.
    Imbert, C.
    Monneau, R.
    TRANSACTIONS OF THE AMERICAN MATHEMATICAL SOCIETY, 2012, 364 (12) : 6187 - 6227