Equilibrium Configurations for Generalized Frenkel–Kontorova Models on Quasicrystals

被引:0
|
作者
Rodrigo Treviño
机构
[1] University of Maryland,Department of Mathematics
来源
关键词
D O I
暂无
中图分类号
学科分类号
摘要
I study classes of generalized Frenkel–Kontorova models whose potentials are given by almost-periodic functions which are closely related to aperiodic Delone sets of finite local complexity. Since such Delone sets serve as models for quasicrystals, this setup presents Frenkel–Kontorova models for the type of aperiodic crystals which have been discovered since Shechtman’s discovery of quasicrystals. Here I consider models with configurations u:Zr→Rd\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$u:{\mathbb {Z}}^r \rightarrow {\mathbb {R}}^d$$\end{document}, where d is the dimension of the quasicrystal, for any r and d. The almost-periodic functions used for potentials are called pattern-equivariant and I show that if the interactions of the model satisfies a mild C2\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$C^2$$\end{document} requirement, and if the potential satisfies a mild non-degeneracy assumption, then there exist equilibrium configurations of any prescribed rotation rotation number/vector/plane. The assumptions are general enough to satisfy the classical Frenkel–Kontorova models and its multidimensional analoges. The proof uses the idea of the anti-integrable limit.
引用
收藏
页码:1 / 17
页数:16
相关论文
共 50 条
  • [1] Equilibrium Configurations for Generalized Frenkel-Kontorova Models on Quasicrystals
    Trevino, Rodrigo
    COMMUNICATIONS IN MATHEMATICAL PHYSICS, 2019, 371 (01) : 1 - 17
  • [2] GENERALIZED FRENKEL-KONTOROVA MODELS
    HU, BB
    LIN, B
    SHI, JC
    PHYSICA A, 1994, 205 (1-3): : 420 - 442
  • [3] Calibrated Configurations for Frenkel–Kontorova Type Models in Almost Periodic Environments
    Eduardo Garibaldi
    Samuel Petite
    Philippe Thieullen
    Annales Henri Poincaré, 2017, 18 : 2905 - 2943
  • [4] Frenkel-Kontorova models, pinned particle configurations, and Burgers shocks
    Mungan, Muhittin
    Yolcu, Cem
    PHYSICAL REVIEW B, 2010, 81 (22):
  • [5] Calibrated Configurations for Frenkel-Kontorova Type Models in Almost Periodic Environments
    Garibaldi, Eduardo
    Petite, Samuel
    Thieullen, Philippe
    ANNALES HENRI POINCARE, 2017, 18 (09): : 2905 - 2943
  • [6] Minimal Configurations for the Frenkel-Kontorova Model on a Quasicrystal
    Jean-Marc Gambaudo
    Pierre Guiraud
    Samuel Petite
    Communications in Mathematical Physics, 2006, 265 : 165 - 188
  • [7] Minimal configurations for the Frenkel-Kontorova model on a quasicrystal
    Gambaudo, JM
    Guiraud, P
    Petite, S
    COMMUNICATIONS IN MATHEMATICAL PHYSICS, 2006, 265 (01) : 165 - 188
  • [8] Ground states and critical points for generalized Frenkel-Kontorova models in Zd
    de la Llave, Rafael
    Valdinoci, Enrico
    NONLINEARITY, 2007, 20 (10) : 2409 - 2424
  • [9] SYMMETRY-BREAKING COMMENSURATE STATES IN GENERALIZED FRENKEL-KONTOROVA MODELS
    SASAKI, K
    FLORIA, LM
    JOURNAL OF PHYSICS-CONDENSED MATTER, 1989, 1 (12) : 2179 - 2198
  • [10] Out-of-equilibrium Frenkel-Kontorova model
    Imparato, A.
    JOURNAL OF STATISTICAL MECHANICS-THEORY AND EXPERIMENT, 2021, 2021 (01):