Leveraging front and side cues for occlusion handling in monocular 3D object detection

被引:0
|
作者
Yuying Song
Zecheng Li
Jingxuan Wu
Chunyi Song
Zhiwei Xu
机构
[1] Ocean College,The Institute of Marine Electronic and Intelligent System
[2] Zhejiang University,undefined
[3] The Engineering Research Center of Oceanic Sensing Technology and Equipment,undefined
[4] Ministry of Education,undefined
[5] The Donghai Laboratory,undefined
来源
The Visual Computer | 2024年 / 40卷
关键词
Monocular object detection; Occlusion Handling; Compositional model; Uncertainty; Attention mechanism; Autonomous driving;
D O I
暂无
中图分类号
学科分类号
摘要
3D object detection, as an essential part of perception, plays a principal role in the autonomous driving system. The cost-competitive monocular 3D object detection has drawn increasing attention recently. However, it still suffers an inferior accuracy especially for occluded objects due to the limited camera view. Inspired by compositional models, in which an object is represented as a combination of multiple components, this paper proposes a new monocular 3D object detection method that decreases the impact of occlusion by utilizing an object’s front and side cues. To do this, the features are extracted from a decoupled front and side representation and then fused by an attention-based module to obtain a more consistent feature distribution. An uncertainty-guided depth ensemble based on geometry is further applied to refine the depth prediction. Experiment results demonstrate that as compared to the conventional methods, the proposed method significantly improves the detection performance for occluded objects while still satisfying real-time efficiency, with the Average Precision on 40 recall positions (AP40), respectively, increasing by 10.23% for partly occluded objects and 12.22% for mostly occluded objects in the KITTI benchmark. The codes are released at https://github.com/kagurua/Front-Side-Det
引用
收藏
页码:1757 / 1773
页数:16
相关论文
共 50 条
  • [41] Object Detection by 3D Aspectlets and Occlusion Reasoning
    Xiang, Yu
    Savarese, Silvio
    2013 IEEE INTERNATIONAL CONFERENCE ON COMPUTER VISION WORKSHOPS (ICCVW), 2013, : 530 - 537
  • [42] Monocular 3D Reconstruction and Augmentation of Elastic Surfaces with Self-Occlusion Handling
    Haouchine, Nazim
    Dequidt, Jeremie
    Berger, Marie-Odile
    Cotin, Stephane
    IEEE TRANSACTIONS ON VISUALIZATION AND COMPUTER GRAPHICS, 2015, 21 (12) : 1363 - 1376
  • [43] SGM3D: Stereo Guided Monocular 3D Object Detection
    Zhou, Zheyuan
    Du, Liang
    Ye, Xiaoqing
    Zou, Zhikang
    Tan, Xiao
    Zhang, Li
    Xue, Xiangyang
    Feng, Jianfeng
    IEEE ROBOTICS AND AUTOMATION LETTERS, 2022, 7 (04) : 10478 - 10485
  • [44] RoadSense3D: A Framework for Roadside Monocular 3D Object Detection
    Carta, Salvatore
    Castrillon-Santana, Modesto
    Marras, Mirko
    Mohamed, Sondos
    Podda, Alessandro Sebastian
    Saia, Roberto
    Sau, Marco
    Zimmer, Walter
    ADJUNCT PROCEEDINGS OF THE 32ND ACM CONFERENCE ON USER MODELING, ADAPTATION AND PERSONALIZATION, UMAP 2024, 2024, : 452 - 459
  • [45] MonoSample: Synthetic 3D Data Augmentation Method in Monocular 3D Object Detection
    Qiao, Junchao
    Liu, Biao
    Yang, Jiaqi
    Wang, Baohua
    Xiu, Sanmu
    Du, Xin
    Nie, Xiaobo
    IEEE ROBOTICS AND AUTOMATION LETTERS, 2024, 9 (08): : 7326 - 7332
  • [46] LEVERAGING 2D AND 3D CUES FOR FINE-GRAINED OBJECT CLASSIFICATION
    Wang, Xiaolong
    Li, Robert
    Currey, Jon
    2016 IEEE INTERNATIONAL CONFERENCE ON IMAGE PROCESSING (ICIP), 2016, : 1354 - 1358
  • [47] Monocular 3D Object Detection: An Extrinsic Parameter Free Approach
    Zhou, Yunsong
    He, Yuan
    Zhu, Hongzi
    Wang, Cheng
    Li, Hongyang
    Jiang, Qinhong
    2021 IEEE/CVF CONFERENCE ON COMPUTER VISION AND PATTERN RECOGNITION, CVPR 2021, 2021, : 7552 - 7562
  • [48] MonoRUn: Monocular 3D Object Detection by Reconstruction and Uncertainty Propagation
    Chen, Hansheng
    Huang, Yuyao
    Tian, Wei
    Gao, Zhong
    Xiong, Lu
    2021 IEEE/CVF CONFERENCE ON COMPUTER VISION AND PATTERN RECOGNITION, CVPR 2021, 2021, : 10374 - 10383
  • [49] Monocular 3D Object Detection Based on Uncertainty Prediction of Keypoints
    Chen, Mu
    Zhao, Huaici
    Liu, Pengfei
    MACHINES, 2022, 10 (01)
  • [50] Efficient Active Learning Strategies for Monocular 3D Object Detection
    Hekimoglu, Aral
    Schmidt, Michael
    Marcos-Ramiro, Alvaro
    Rigoll, Gerhard
    2022 IEEE INTELLIGENT VEHICLES SYMPOSIUM (IV), 2022, : 295 - 302