Inexact Proximal Point Algorithms and Descent Methods in Optimization

被引:0
|
作者
Carlos Humes
Paulo J. S. Silva
机构
[1] University of São Paulo,Department of Computer Science
来源
关键词
proximal methods; convex programming; monotone operators;
D O I
暂无
中图分类号
学科分类号
摘要
Proximal point methods have been used by the optimization community to analyze different algorithms like multiplier methods for constrained optimization, and bundle methods for nonsmooth problems. This paper aims to be an introduction to the theory of proximal algorithms borrowing ideas from descent methods for unconstrained optimization. This new viewpoint allows us to present a simple and natural convergence proof. We also improve slightly the results from Solodov and Svaiter (1999).
引用
收藏
页码:257 / 271
页数:14
相关论文
共 50 条
  • [21] Convergence analysis of inexact proximal point algorithms on Hadamard manifolds
    Jinhua Wang
    Chong Li
    Genaro Lopez
    Jen-Chih Yao
    Journal of Global Optimization, 2015, 61 : 553 - 573
  • [22] Convergence analysis of inexact proximal point algorithms on Hadamard manifolds
    Wang, Jinhua
    Li, Chong
    Lopez, Genaro
    Yao, Jen-Chih
    JOURNAL OF GLOBAL OPTIMIZATION, 2015, 61 (03) : 553 - 573
  • [23] A comparison of rates of convergence of two inexact proximal point algorithms
    Solodov, MV
    Svaiter, BF
    NONLINEAR OPTIMIZATION AND RELATED TOPICS, 2000, 36 : 415 - 427
  • [24] Finite Termination of Inexact Proximal Point Algorithms in Hilbert Spaces
    J. H. Wang
    C. Li
    J.-C. Yao
    Journal of Optimization Theory and Applications, 2015, 166 : 188 - 212
  • [25] Self-adaptive inexact proximal point methods
    Hager, William W.
    Zhang, Hongchao
    COMPUTATIONAL OPTIMIZATION AND APPLICATIONS, 2008, 39 (02) : 161 - 181
  • [26] Linear convergence of inexact descent method and inexact proximal gradient algorithms for lower-order regularization problems
    Hu, Yaohua
    Li, Chong
    Meng, Kaiwen
    Yang, Xiaoqi
    JOURNAL OF GLOBAL OPTIMIZATION, 2021, 79 (04) : 853 - 883
  • [27] Linear convergence of inexact descent method and inexact proximal gradient algorithms for lower-order regularization problems
    Yaohua Hu
    Chong Li
    Kaiwen Meng
    Xiaoqi Yang
    Journal of Global Optimization, 2021, 79 : 853 - 883
  • [28] On the convergence of inexact block coordinate descent methods for constrained optimization
    Cassioli, A.
    Di Lorenzo, D.
    Sciandrone, M.
    EUROPEAN JOURNAL OF OPERATIONAL RESEARCH, 2013, 231 (02) : 274 - 281
  • [29] Asymptotic convergence analysis of some inexact proximal point algorithms for minimization
    Zhu, CY
    SIAM JOURNAL ON OPTIMIZATION, 1996, 6 (03) : 626 - 637
  • [30] Inexact versions of Proximal Point and augmented Lagrangian algorithms in Banach spaces
    Iusem, A
    Otero, RG
    NUMERICAL FUNCTIONAL ANALYSIS AND OPTIMIZATION, 2001, 22 (5-6) : 609 - 640