Lyapunov type inequalities for the Riemann-Liouville fractional differential equations of higher order

被引:0
|
作者
Laihui Zhang
Zhaowen Zheng
机构
[1] Qufu Normal University,School of Mathematical Sciences
来源
Advances in Difference Equations | / 2017卷
关键词
Lyapunov type inequality; Riemann-Liouville fractional differential equation; Green’s function; higher fractional order;
D O I
暂无
中图分类号
学科分类号
摘要
In this paper, some new Lyapunov type inequalities will be presented for Riemann-Liouville fractional differential equations of the form (Daαx)(t)+p(t)|x(t)|μ−1x(t)+q(t)|x(t)|γ−1(t)x(t)=f(t),\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\bigl(D^{\alpha}_{a}x\bigr) (t)+p(t)\big| x(t)\big|^{\mu-1}x (t)+q(t)\big| x(t)\big|^{\gamma -1}(t)x(t)=f(t), $$\end{document} where α∈(n−1,n]\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$\alpha\in(n-1, n]$\end{document} (n≥3\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$n\geq3$\end{document}), p, q, f are real-valued functions and 0<γ<1<μ<n\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$0<\gamma<1<\mu<n$\end{document}.
引用
收藏
相关论文
共 50 条
  • [21] Attractivity of solutions of Riemann-Liouville fractional differential equations
    Zhu, Tao
    ELECTRONIC JOURNAL OF QUALITATIVE THEORY OF DIFFERENTIAL EQUATIONS, 2022, (52) : 1 - 12
  • [22] Enlarged Controllability of Riemann-Liouville Fractional Differential Equations
    Karite, Touria
    Boutoulout, Ali
    Torres, Delfim F. M.
    JOURNAL OF COMPUTATIONAL AND NONLINEAR DYNAMICS, 2018, 13 (09):
  • [23] Lyapunov-type inequality for a Riemann-Liouville fractional differential boundary value problem
    Al-Qurashi, Maysaa
    Ragoub, Lakhdar
    HACETTEPE JOURNAL OF MATHEMATICS AND STATISTICS, 2018, 47 (06): : 1447 - 1452
  • [24] A Study of Nonlinear Fractional Differential Equations of Arbitrary Order with Riemann-Liouville Type Multistrip Boundary Conditions
    Ahmad, Bashir
    Ntouyas, Sotiris K.
    Alsaedi, Ahmed
    MATHEMATICAL PROBLEMS IN ENGINEERING, 2013, 2013
  • [25] SETTING AND SOLVING OF THE CAUCHY TYPE PROBLEMS FOR THE SECOND ORDER DIFFERENTIAL EQUATIONS WITH RIEMANN-LIOUVILLE FRACTIONAL DERIVATIVES
    Ogorodnikov, E. N.
    Yashagin, N. S.
    VESTNIK SAMARSKOGO GOSUDARSTVENNOGO TEKHNICHESKOGO UNIVERSITETA-SERIYA-FIZIKO-MATEMATICHESKIYE NAUKI, 2010, (01): : 24 - 36
  • [26] Cauchy problems for fractional differential equations with Riemann-Liouville fractional derivatives
    Li Kexue
    Peng Jigen
    Jia Junxiong
    JOURNAL OF FUNCTIONAL ANALYSIS, 2012, 263 (02) : 476 - 510
  • [27] Mild solutions of Riemann-Liouville fractional differential equations with fractional impulses
    Anguraj, Annamalai
    Kanjanadevi, Subramaniam
    Jose Nieto, Juan
    NONLINEAR ANALYSIS-MODELLING AND CONTROL, 2017, 22 (06): : 753 - 764
  • [28] Riemann-Liouville fractional differential equations with Hadamard fractional integral conditions
    Tariboon, Jessada
    Ntouyas, Sotiris K.
    Thiramanus, Phollakrit
    INTERNATIONAL JOURNAL OF APPLIED MATHEMATICS & STATISTICS, 2016, 54 (01): : 119 - 134
  • [29] On the Φ-tempered fractional differential systems of Riemann-Liouville type
    Ziane, Mohamed
    Zentar, Oualid
    Al Horani, Mohammed
    JOURNAL OF ANALYSIS, 2024, 32 (03): : 1487 - 1506
  • [30] Generalized inequalities involving fractional operators of the Riemann-Liouville type
    Bosch, Paul
    Carmenate, Hector J.
    Rodriguez, Jose M.
    Sigarreta, Jose M.
    AIMS MATHEMATICS, 2022, 7 (01): : 1470 - 1485