Semi-discrete Galerkin approximation of the single layer equation by general splines

被引:0
|
作者
Mark Ainsworth
Rolf Grigorieff
Ian Sloan
机构
[1] Mathematics Department,
[2] Leicester University,undefined
[3] Leicester LE1 7RH,undefined
[4] UK,undefined
[5] ain@mcs.le.ac.uk ,undefined
[6] Fachbereich Mathematik,undefined
[7] Sekr. MA 6-4,undefined
[8] Technische Universität Berlin,undefined
[9] Straße des 17. Juni 135,undefined
[10] D-10623,undefined
[11] Berlin,undefined
[12] Germany,undefined
[13] grigo@math.tu-berlin.de ,undefined
[14] School of Mathematics,undefined
[15] University of New South Wales,undefined
[16] Sydney 2052,undefined
[17] Australia,undefined
[18] I.Sloan@unsw.edu.au ,undefined
来源
Numerische Mathematik | 1998年 / 79卷
关键词
Mathematics Subject Classification (1991):65N30;
D O I
暂无
中图分类号
学科分类号
摘要
This paper deals with a semi-discrete version of the Galerkin method for the single-layer equation in a plane, in which the outer integral is approximated by a quadrature rule. A feature of the analysis is that it does not require high precision quadrature or exceptional smoothness of the data. Instead, the assumptions on the quadrature rule are that constant functions are integrated exactly, that the rule is based on sufficiently many quadrature points to resolve the approximation space, and that the Peano constant of the rule is sufficiently small. It is then shown that the semi-discrete Galerkin approximation is well posed. For the trial and test spaces we consider quite general piecewise polynomials on quasi-uniform meshes, ranging from discontinuous piecewise polynomials to smoothest splines. Since it is not assumed that the quadrature rule integrates products of basis functions exactly, one might expect degradation in the rate of convergence. To the contrary, it is shown that the semi-discrete Galerkin approximation will converge at the same rate as the corresponding Galerkin approximation in the \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document} $H^0$\end{document} and \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document} $H^{-1}$\end{document} norms.
引用
收藏
页码:157 / 174
页数:17
相关论文
共 50 条
  • [11] ON INTEGRABILITY OF SEMI-DISCRETE TZITZEICA EQUATION
    Garifullin, R. N.
    UFA MATHEMATICAL JOURNAL, 2021, 13 (02): : 15 - 21
  • [12] The semi-discrete diffusion convection equation with decay
    Lizama, Carlos
    Warma, Mahamadi
    APPLIED MATHEMATICS LETTERS, 2024, 151
  • [13] SEMI-DISCRETE AND FULLY DISCRETE HDG METHODS FOR BURGERS' EQUATION
    Zhu, Zimo
    Chen, Gang
    Xie, Xiaoping
    COMMUNICATIONS ON PURE AND APPLIED ANALYSIS, 2023, 22 (01) : 58 - 81
  • [14] A semi-discrete scheme for the stochastic landau–lifshitz equation
    Alouges F.
    Bouard A.
    Hocquet A.
    Stochastic Partial Differential Equations: Analysis and Computations, 2014, 2 (3) : 281 - 315
  • [15] The Semi-discrete Finite Element Method for the Cauchy Equation
    Hou, Lei
    Sun, Xianyan
    Qiu, Lin
    MECHANICAL COMPONENTS AND CONTROL ENGINEERING III, 2014, 668-669 : 1130 - +
  • [16] An integrable semi-discrete Degasperis-Procesi equation
    Feng, Bao-Feng
    Maruno, Ken-ichi
    Ohta, Yasuhiro
    NONLINEARITY, 2017, 30 (06) : 2246 - 2267
  • [17] Deterministic Numerical Solutions to a Semi-Discrete Boltzmann Equation
    Majorana, Armando
    31ST INTERNATIONAL SYMPOSIUM ON RAREFIED GAS DYNAMICS (RGD31), 2019, 2132
  • [18] Infinitesimal Darboux transformation and semi-discrete MKDV equation
    Cho, Joseph
    Rossman, Wayne
    Seno, Tomoya
    NONLINEARITY, 2022, 35 (04) : 2134 - 2146
  • [19] A semi-discrete scheme for the stochastic nonlinear Schrodinger equation
    De Bouard, A
    Debussche, A
    NUMERISCHE MATHEMATIK, 2004, 96 (04) : 733 - 770
  • [20] Two-component model of a microtubule in a semi-discrete approximation
    Zdravković, Slobodan
    Bugay, Aleksandr N.
    Zeković, Slobodan
    Ranković, Dragana
    Petrović, Jovana
    Chaos, Solitons and Fractals, 2024, 189