Error estimates for the regularization of least squares problems

被引:0
|
作者
C. Brezinski
G. Rodriguez
S. Seatzu
机构
[1] Université des Sciences et Technologies de Lille,Laboratoire Paul Painlevé, UMR CNRS 8524
[2] Università di Cagliari,Dipartimento di Matematica e Informatica
来源
Numerical Algorithms | 2009年 / 51卷
关键词
Least squares problems; Regularization; Error estimation;
D O I
暂无
中图分类号
学科分类号
摘要
The a posteriori estimate of the errors in the numerical solution of ill-conditioned linear systems with contaminated data is a complicated problem. Several estimates of the norm of the error have been recently introduced and analyzed, under the assumption that the matrix is square and nonsingular. In this paper we study the same problem in the case of a rectangular and, in general, rank-deficient matrix. As a result, a class of error estimates previously introduced by the authors (Brezinski et al., Numer Algorithms, in press, 2008) are extended to the least squares solution of consistent and inconsistent linear systems. Their application to various direct and iterative regularization methods are also discussed, and the numerical effectiveness of these error estimates is pointed out by the results of an extensive experimentation.
引用
收藏
页码:61 / 76
页数:15
相关论文
共 50 条