Entanglement induced by noncommutativity: anisotropic harmonic oscillator in noncommutative space

被引:0
|
作者
Abhishek Muhuri
Debdeep Sinha
Subir Ghosh
机构
[1] Indian Institute of Science Education and Research Kolkata,Department of Physical Sciences
[2] Indian Statistical Institute,Physics and Applied Mathematics Unit
关键词
D O I
暂无
中图分类号
学科分类号
摘要
Quantum entanglement, induced by spatial noncommutativity, is investigated for an anisotropic harmonic oscillator. Exact solutions for the system are obtained after the model is re-expressed in terms of canonical variables, by performing a particular Bopp’s shift to the noncommutating degrees of freedom. Employing Simon’s separability criterion, we find that the states of the system are entangled provided a unique function of the (mass and frequency) parameters obeys an inequality. Entanglement of Formation for this system is also computed and its relation to the degree of anisotropy is discussed. It is worth mentioning that, even in a noncommutative space, entanglement is generated only if the harmonic oscillator is anisotropic. Interestingly, the Entanglement of Formation saturates for higher values of the deformation parameter θ\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\theta $$\end{document}, that quantifies spatial noncommutativity.
引用
收藏
相关论文
共 50 条
  • [41] Noncommutative anisotropic oscillator in a homogeneous magnetic field
    Nath, D.
    Roy, P.
    ANNALS OF PHYSICS, 2017, 377 : 115 - 124
  • [42] On the spectral zeta function for the noncommutative harmonic oscillator
    Ichinose, Takashi
    Wakayama, Masato
    REPORTS ON MATHEMATICAL PHYSICS, 2007, 59 (03) : 421 - 432
  • [43] Partition function of the harmonic oscillator on a noncommutative plane
    Jabbari, Iraj
    Jahan, Akbar
    Riazi, Zafar
    TURKISH JOURNAL OF PHYSICS, 2009, 33 (03): : 149 - 154
  • [44] EXACT SOLUTION OF HARMONICAL OSCILLATOR IN SPACE WITH SPIN NONCOMMUTATIVITY
    Vasyuta, V. M.
    JOURNAL OF PHYSICAL STUDIES, 2013, 17 (03):
  • [45] Noncommutative 3D harmonic oscillator
    Smailagic, A
    Spallucci, E
    JOURNAL OF PHYSICS A-MATHEMATICAL AND GENERAL, 2002, 35 (26): : L363 - L368
  • [46] DIRAC OSCILLATOR IN DYNAMICAL NONCOMMUTATIVE SPACE
    Haouam, Ilyas
    ACTA POLYTECHNICA, 2021, 61 (06) : 689 - 702
  • [47] Dirac Oscillator in Noncommutative Phase Space
    Shaohong Cai
    Tao Jing
    Guangjie Guo
    Rukun Zhang
    International Journal of Theoretical Physics, 2010, 49 : 1699 - 1705
  • [48] Dirac Oscillator in Noncommutative Phase Space
    Cai, Shaohong
    Jing, Tao
    Guo, Guangjie
    Zhang, Rukun
    INTERNATIONAL JOURNAL OF THEORETICAL PHYSICS, 2010, 49 (08) : 1699 - 1705
  • [49] DKP oscillator in noncommutative phase space
    Guo, Guangjie
    Long, Chaoyun
    Yang, Zuhua
    Qin, Shuijie
    CANADIAN JOURNAL OF PHYSICS, 2009, 87 (09) : 989 - 993
  • [50] Investigation of a harmonic oscillator in a magnetic field with damping and time dependent noncommutativity
    Dutta, Manjari
    Ganguly, Shreemoyee
    Gangopadhyay, Sunandan
    PHYSICA SCRIPTA, 2021, 96 (12)