Entanglement induced by noncommutativity: anisotropic harmonic oscillator in noncommutative space

被引:0
|
作者
Abhishek Muhuri
Debdeep Sinha
Subir Ghosh
机构
[1] Indian Institute of Science Education and Research Kolkata,Department of Physical Sciences
[2] Indian Statistical Institute,Physics and Applied Mathematics Unit
关键词
D O I
暂无
中图分类号
学科分类号
摘要
Quantum entanglement, induced by spatial noncommutativity, is investigated for an anisotropic harmonic oscillator. Exact solutions for the system are obtained after the model is re-expressed in terms of canonical variables, by performing a particular Bopp’s shift to the noncommutating degrees of freedom. Employing Simon’s separability criterion, we find that the states of the system are entangled provided a unique function of the (mass and frequency) parameters obeys an inequality. Entanglement of Formation for this system is also computed and its relation to the degree of anisotropy is discussed. It is worth mentioning that, even in a noncommutative space, entanglement is generated only if the harmonic oscillator is anisotropic. Interestingly, the Entanglement of Formation saturates for higher values of the deformation parameter θ\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\theta $$\end{document}, that quantifies spatial noncommutativity.
引用
收藏
相关论文
共 50 条
  • [1] Entanglement induced by noncommutativity: anisotropic harmonic oscillator in noncommutative space
    Muhuri, Abhishek
    Sinha, Debdeep
    Ghosh, Subir
    EUROPEAN PHYSICAL JOURNAL PLUS, 2021, 136 (01):
  • [2] Entanglement in phase-space distribution for an anisotropic harmonic oscillator in noncommutative space
    Patra, Pinaki
    QUANTUM INFORMATION PROCESSING, 2022, 22 (01)
  • [3] Entanglement in phase-space distribution for an anisotropic harmonic oscillator in noncommutative space
    Pinaki Patra
    Quantum Information Processing, 22
  • [4] Effect of noncommutativity on the spectrum of free particle and harmonic oscillator in rotationally invariant noncommutative phase space
    Gnatenko, Kh P.
    Shyiko, O., V
    MODERN PHYSICS LETTERS A, 2018, 33 (16)
  • [5] Equivalence of curvature and noncommutativity in a physical space: Harmonic oscillator on sphere
    Ghorashi, S. A. A.
    Mahdifar, A.
    Roknizadeh, R.
    MODERN PHYSICS LETTERS A, 2014, 29 (19)
  • [6] Energy-dependent harmonic oscillator in noncommutative space
    Benchikha, A.
    Merad, M.
    Birkandan, T.
    MODERN PHYSICS LETTERS A, 2017, 32 (20)
  • [7] HARMONIC OSCILLATOR CHAIN IN NONCOMMUTATIVE PHASE SPACE WITH ROTATIONAL SYMMETRY
    Gnatenko, Kh P.
    UKRAINIAN JOURNAL OF PHYSICS, 2019, 64 (02): : 131 - 136
  • [8] Thermodynamic properties of harmonic oscillator system in noncommutative phase space
    Mieralimujiang, Aili
    Mamatrishat, Mamat
    Yasenjan, Ghupur
    ACTA PHYSICA SINICA, 2015, 64 (14)
  • [9] Energy splitting of isotropic harmonic oscillator in noncommutative phase space
    Wang, JH
    Li, K
    Liu, P
    HIGH ENERGY PHYSICS AND NUCLEAR PHYSICS-CHINESE EDITION, 2006, 30 (05): : 387 - 391
  • [10] Entanglement due to noncommutativity in phase space
    Bastos, Catarina
    Bernardini, Alex E.
    Bertolami, Orfeu
    Dias, Nuno Costa
    Prata, Joao Nuno
    PHYSICAL REVIEW D, 2013, 88 (08):