On the complexity of three-dimensional cusped hyperbolic manifolds

被引:0
|
作者
A. Yu. Vesnin
V. V. Tarkaev
E. A. Fominykh
机构
[1] Russian Academy of Sciences,Sobolev Institute of Mathematics, Siberian Branch
[2] Omsk State Technical University,Institute of Mathematics and Mechanics, Ural Branch
[3] Chelyabinsk State University,undefined
[4] Russian Academy of Sciences,undefined
来源
Doklady Mathematics | 2014年 / 89卷
关键词
DOKLADY Mathematic; Hyperbolic Manifold; Infinite Family; Cyclic Covering; Geodesic Boundary;
D O I
暂无
中图分类号
学科分类号
摘要
引用
收藏
页码:267 / 270
页数:3
相关论文
共 50 条
  • [41] On three-dimensional lorentzian β-kenmotsu manifolds
    Yaliniz, A. Funda
    Yildiz, Ahmet
    Turan, Mine
    KUWAIT JOURNAL OF SCIENCE & ENGINEERING, 2009, 36 (2A): : 51 - 62
  • [42] Three-dimensional conformally symmetric manifolds
    E. Calviño-Louzao
    E. García-Río
    J. Seoane-Bascoy
    R. Vázquez-Lorenzo
    Annali di Matematica Pura ed Applicata (1923 -), 2014, 193 : 1661 - 1670
  • [43] Three-dimensional conformally symmetric manifolds
    Calvino-Louzao, E.
    Garcia-Rio, E.
    Seoane-Bascoy, J.
    Vazquez-Lorenzo, R.
    ANNALI DI MATEMATICA PURA ED APPLICATA, 2014, 193 (06) : 1661 - 1670
  • [44] Three-dimensional manifolds with poor spines
    A. Yu. Vesnin
    V. G. Turaev
    E. A. Fominykh
    Proceedings of the Steklov Institute of Mathematics, 2015, 288 : 29 - 38
  • [45] ON THREE-DIMENSIONAL HOMOGENEOUS FINSLER MANIFOLDS
    Tayebi, Akbar
    Najafi, Behzad
    FACTA UNIVERSITATIS-SERIES MATHEMATICS AND INFORMATICS, 2023, 38 (01): : 141 - 151
  • [46] Recognition and tabulation of three-dimensional manifolds
    Matveev, S.V.
    Doklady Akademii Nauk, 2005, 400 (01) : 26 - 28
  • [47] Hamiltonian links in three-dimensional manifolds
    Mishachev, KN
    IZVESTIYA MATHEMATICS, 1995, 59 (06) : 1193 - 1205
  • [48] Three-dimensional manifolds with poor spines
    Vesnin, A. Yu
    Turaev, V. G.
    Fominykh, E. A.
    PROCEEDINGS OF THE STEKLOV INSTITUTE OF MATHEMATICS, 2015, 288 (01) : 29 - 38
  • [49] Three-dimensional manifolds and their Heegaard diagrams
    Singer, James
    TRANSACTIONS OF THE AMERICAN MATHEMATICAL SOCIETY, 1933, 35 (1-4) : 88 - 111
  • [50] MANY CUSPED HYPERBOLIC 3-MANIFOLDS DO NOT BOUND GEOMETRICALLY
    Kolpakov, Alexander
    Reid, Alan W.
    Riolo, Stefano
    PROCEEDINGS OF THE AMERICAN MATHEMATICAL SOCIETY, 2020, 148 (05) : 2233 - 2243