Existence of weak solution and semiclassical limit for quantum drift-diffusion model

被引:0
|
作者
Li Chen
Qiangchang Ju
机构
[1] Tsinghua University,Department of Mathematical Sciences
[2] Johannes Gutenberg-Universitäat,Fachbereich Mathematik und Informatik
[3] Institute of Applied Physics and Computational Mathematics,Dipartimento di Matematica “G. Castelnuovo”
[4] Universitá di Roma “La Sapienza”,undefined
关键词
35K35; 65M12; 65M20; 76Y05; Quantum drift-diffusion; weak solution; semiclassical limit; entropy inequality;
D O I
暂无
中图分类号
学科分类号
摘要
The existence and semiclassical limit of the solution to one-dimensional transient quantum drift-diffusion model in semiconductor simulation are discussed. Besides the proof of existence of the weak solution, it is also obtained that the semiclassical limit of this solution solves the classical drift-diffusion model. The key estimates rest on the entropy inequalities derived from separation of quantum quasi-Fermi level.
引用
收藏
页码:1 / 15
页数:14
相关论文
共 50 条
  • [41] On the Multidimensional Bipolar Isothermal Quantum Drift-diffusion Model
    Dong, Jianwei
    INTELLIGENT SYSTEM AND APPLIED MATERIAL, PTS 1 AND 2, 2012, 466-467 : 186 - 190
  • [42] Optimal control of the stationary quantum drift-diffusion model
    Unterreiter, A.
    Volkwein, S.
    COMMUNICATIONS IN MATHEMATICAL SCIENCES, 2007, 5 (01) : 85 - 111
  • [43] SOLUTION TO A MULTI-DIMENSIONAL ISENTROPIC QUANTUM DRIFT-DIFFUSION MODEL FOR BIPOLAR SEMICONDUCTORS
    Ri, Jinmyong
    Ra, Sungjin
    ELECTRONIC JOURNAL OF DIFFERENTIAL EQUATIONS, 2018,
  • [44] The Asymptotic Drift-Diffusion Limit of Thermal Neutrons
    McClarren, Ryan G.
    Adams, Marvin L.
    Vaquer, Pablo A.
    Strack, Clay
    JOURNAL OF COMPUTATIONAL AND THEORETICAL TRANSPORT, 2014, 43 (1-7) : 402 - 417
  • [45] The uniform boundedness and threshold for the global existence of the radial solution to a drift-diffusion system
    Kurokiba, M
    Nagai, T
    Ogawa, T
    COMMUNICATIONS ON PURE AND APPLIED ANALYSIS, 2006, 5 (01) : 97 - 106
  • [46] Iterative solution of the drift-diffusion equations
    Nachaoui, A
    NUMERICAL ALGORITHMS, 1999, 21 (1-4) : 323 - 341
  • [47] Iterative solution of the drift-diffusion equations
    Abdeljalil Nachaoui
    Numerical Algorithms, 1999, 21 : 323 - 341
  • [48] The study of a drift-diffusion model
    Abouchabaka, J
    Aboulaïch, R
    Nachaoui, A
    Souissi, A
    ICM 2001: 13TH INTERNATIONAL CONFERENCE ON MICROELECTRONICS, PROCEEDINGS, 2001, : 54 - 58
  • [49] Existence of stationary solutions to an energy drift-diffusion model for semiconductor devices
    Fang, WF
    Ito, K
    MATHEMATICAL MODELS & METHODS IN APPLIED SCIENCES, 2001, 11 (05): : 827 - 840
  • [50] Application of weak equivalence transformations to a group analysis of a drift-diffusion model
    Romano, V
    Torrisi, M
    JOURNAL OF PHYSICS A-MATHEMATICAL AND GENERAL, 1999, 32 (45): : 7953 - 7963