SU(3) symmetry for orbital angular momentum and method of extremal projection operators

被引:0
|
作者
V. N. Tolstoy
机构
[1] Moscow State University,Institute of Nuclear Physics
来源
Physics of Atomic Nuclei | 2006年 / 69卷
关键词
21.60.-n; 21.60.Fw;
D O I
暂无
中图分类号
学科分类号
摘要
Basic elements of the formalism of the theory that is based on the representations of the SU(3) group for the case of its reduction to the SO(3) subgroup of orbital angular momentum and which is widely used in theoretical physics is presented in a systematic and consistent form. Irreducible SU(3) ⊃ SO(3) bases, both a nonorthogonal one chosen among Elliott vectors and an orthogonal one obtained from a nonorthogonal one by diagonalizing the Bargmann-Moshinsky operator, are described in detail. In particular, it is shown that there is wide arbitrariness in choosing a basis among Elliott vectors. The SU(3) ⊃ SO(3) Clebsch-Gordan coefficients are considered in detail, along with all of their classical symmetry properties. A brief survey (history of discovery) of the method of extremal projection operators for Lie symmetries (Lie algebras and superalgebras and their quantum analogs) is given.
引用
收藏
页码:1058 / 1084
页数:26
相关论文
共 50 条
  • [21] ANALYTICAL ANGULAR-MOMENTUM PROJECTION METHOD
    FLESSAS, GP
    LETTERE AL NUOVO CIMENTO, 1977, 19 (14): : 534 - 538
  • [22] RPA METHOD WITH ANGULAR-MOMENTUM PROJECTION
    KAMMURI, T
    KUSUNO, S
    ZEITSCHRIFT FUR PHYSIK, 1972, 255 (05): : 431 - &
  • [23] NEW METHOD FOR ANGULAR-MOMENTUM PROJECTION
    ULLAH, N
    PHYSICAL REVIEW LETTERS, 1971, 27 (07) : 439 - &
  • [24] Raising and Lowering Operators for Orbital Angular Momentum Quantum Numbers
    Liu, Q. H.
    Xun, D. M.
    Shan, L.
    INTERNATIONAL JOURNAL OF THEORETICAL PHYSICS, 2010, 49 (09) : 2164 - 2171
  • [25] Raising and Lowering Operators for Orbital Angular Momentum Quantum Numbers
    Q. H. Liu
    D. M. Xun
    L. Shan
    International Journal of Theoretical Physics, 2010, 49 : 2164 - 2171
  • [26] On the transformations generated by the electromagnetic spin and orbital angular momentum operators
    Fernandez-Corbaton, Ivan
    Zambrana-Puyalto, Xavier
    Molina-Terriza, Gabriel
    JOURNAL OF THE OPTICAL SOCIETY OF AMERICA B-OPTICAL PHYSICS, 2014, 31 (09) : 2136 - 2141
  • [27] Nonlinear Lie algebra and ladder operators for orbital angular momentum
    Ni, ZX
    JOURNAL OF PHYSICS A-MATHEMATICAL AND GENERAL, 1999, 32 (11): : 2217 - 2224
  • [28] Wigner functions for angle and orbital angular momentum: Operators and dynamics
    Kastrup, H. A.
    PHYSICAL REVIEW A, 2017, 95 (05)
  • [29] A method for solving the molecular Schrodinger equation in Cartesian coordinates via angular momentum projection operators
    Suarez, J.
    Farantos, S. C.
    Stamatiadis, S.
    Lathouwers, L.
    COMPUTER PHYSICS COMMUNICATIONS, 2009, 180 (11) : 2025 - 2033
  • [30] ANGULAR-MOMENTUM PROJECTION OPERATORS AND MOLECULAR BOUND-STATES
    BLANCO, M
    HELLER, EJ
    JOURNAL OF CHEMICAL PHYSICS, 1983, 78 (05): : 2504 - 2517