Semi-parametric quantile estimation for double threshold autoregressive models with heteroskedasticity

被引:0
|
作者
Cathy W. S. Chen
Richard Gerlach
机构
[1] Feng Chia University,Department of Statistics
[2] The University of Sydney Business School,Discipline of Business Analytics
来源
Computational Statistics | 2013年 / 28卷
关键词
Asymmetric Laplace distribution; Nonlinear time series; MCMC; GARCH; Quantile regression;
D O I
暂无
中图分类号
学科分类号
摘要
Compared to the conditional mean or median, conditional quantiles provide a more comprehensive picture of a variable in various scenarios. A semi-parametric quantile estimation method for a double threshold auto-regression with exogenous regressors and heteroskedasticity is considered, allowing representation of both asymmetry and volatility clustering. As such, GARCH dynamics with nonlinearity are added to a nonlinear time series regression model. An adaptive Bayesian Markov chain Monte Carlo scheme, exploiting the link between the quantile loss function and the asymmetric-Laplace distribution, is employed for estimation and inference, simultaneously estimating and accounting for nonlinear heteroskedasticity plus unknown threshold limits and delay lags. A simulation study illustrates sampling properties of the method. Two data sets are considered in the empirical applications: modelling daily maximum temperatures in Melbourne, Australia; and exploring dynamic linkages between financial markets in the US and Hong Kong.
引用
收藏
页码:1103 / 1131
页数:28
相关论文
共 50 条
  • [31] Semi-parametric second-order reduced-bias high quantile estimation
    Frederico Caeiro
    M. Ivette Gomes
    TEST, 2009, 18 : 392 - 413
  • [32] Semi-parametric second-order reduced-bias high quantile estimation
    Caeiro, Frederico
    Gomes, M. Ivette
    TEST, 2009, 18 (02) : 392 - 413
  • [33] Heteroskedasticity-robust semi-parametric GMM estimation of a spatial model with space-varying coefficients
    Wei, Hongjie
    Sun, Yan
    SPATIAL ECONOMIC ANALYSIS, 2017, 12 (01) : 113 - 128
  • [34] Guaranteed estimation of parameters of threshold autoregressive process with conditional heteroskedasticity
    Burkatovskaya, Yulia B.
    Vorobeychikov, Sergey E.
    VESTNIK TOMSKOGO GOSUDARSTVENNOGO UNIVERSITETA-UPRAVLENIE VYCHISLITELNAJA TEHNIKA I INFORMATIKA-TOMSK STATE UNIVERSITY JOURNAL OF CONTROL AND COMPUTER SCIENCE, 2013, 23 (02): : 32 - 41
  • [35] AN ASYNCHRONOUS MULTI-AGENT SYSTEM FOR OPTIMIZING SEMI-PARAMETRIC SPATIAL AUTOREGRESSIVE MODELS
    Koch, Matthias
    Krisztin, Tamas
    ICAART 2011: PROCEEDINGS OF THE 3RD INTERNATIONAL CONFERENCE ON AGENTS AND ARTIFICIAL INTELLIGENCE, VOL 2, 2011, : 483 - 486
  • [36] Bayesian Semi-Parametric Realized Conditional Autoregressive Expectile Models for Tail Risk Forecasting
    Gerlach, Richard
    Wang, Chao
    JOURNAL OF FINANCIAL ECONOMETRICS, 2022, 20 (01) : 105 - 138
  • [37] SEMI-PARAMETRIC ESTIMATION OF INEQUALITY MEASURES
    Kpanzou, T. A.
    de Wet, T.
    Neethling, A.
    SOUTH AFRICAN STATISTICAL JOURNAL, 2013, 47 (01) : 33 - 48
  • [38] Extreme Quantile Estimation for Autoregressive Models
    Li, Deyuan
    Wang, Huixia Judy
    JOURNAL OF BUSINESS & ECONOMIC STATISTICS, 2019, 37 (04) : 661 - 670
  • [39] Sparse Semi-Parametric Chirp Estimation
    Sward, Johan
    Brynolfsson, Johan
    Jakobsson, Andreas
    Hansson-Sandsten, Maria
    CONFERENCE RECORD OF THE 2014 FORTY-EIGHTH ASILOMAR CONFERENCE ON SIGNALS, SYSTEMS & COMPUTERS, 2014, : 1236 - 1240
  • [40] Efficient IV estimation for autoregressive models with conditional heteroskedasticity
    Kuersteiner, GM
    ECONOMETRIC THEORY, 2002, 18 (03) : 547 - 583