Exploring the geometry of the bifurcation sets in parameter space

被引:0
|
作者
Barrio, Roberto [1 ,2 ]
Ibanez, Santiago [3 ]
Perez, Lucia [3 ]
机构
[1] Univ Zaragoza, Dept Matemat Aplicada, Zaragoza 50009, Spain
[2] Univ Zaragoza, IUMA, Computat Dynam Grp, Zaragoza 50009, Spain
[3] Univ Oviedo, Dept Matemat, Oviedo 33007, Spain
来源
SCIENTIFIC REPORTS | 2024年 / 14卷 / 01期
关键词
FITZHUGH-NAGUMO EQUATION; HOMOCLINIC ORBITS; MODEL; HOPF;
D O I
10.1038/s41598-024-61574-6
中图分类号
O [数理科学和化学]; P [天文学、地球科学]; Q [生物科学]; N [自然科学总论];
学科分类号
07 ; 0710 ; 09 ;
摘要
By studying a nonlinear model by inspecting a p-dimensional parameter space through ( p - 1 ) \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$(p-1)$$\end{document} -dimensional cuts, one can detect changes that are only determined by the geometry of the manifolds that make up the bifurcation set. We refer to these changes as geometric bifurcations. They can be understood within the framework of the theory of singularities for differentiable mappings and, in particular, of the Morse Theory. Working with a three-dimensional parameter space, geometric bifurcations are illustrated in two models of neuron activity: the Hindmarsh-Rose and the FitzHugh-Nagumo systems. Both are fast-slow systems with a small parameter that controls the time scale of a slow variable. Geometric bifurcations are observed on slices corresponding to fixed values of this distinguished small parameter, but they should be of interest to anyone studying bifurcation diagrams in the context of nonlinear phenomena.
引用
收藏
页数:14
相关论文
共 50 条
  • [31] Geometry of the Parameter Space of a Quantum System: Classical Point of View
    Alvarez-Jimenez, Javier
    Gonzalez, Diego
    Gutierrez-Ruiz, Daniel
    Vergara, Jose David
    ANNALEN DER PHYSIK, 2020, 532 (02)
  • [32] N-bein formalism for the parameter space of quantum geometry
    Romero, Jorge
    Velasquez, Carlos A.
    Vergara, J. David
    JOURNAL OF PHYSICS A-MATHEMATICAL AND THEORETICAL, 2024, 57 (37)
  • [33] Geometry on the parameter space of the belief propagation algorithm on Bayesian networks
    Watanabe, Y
    PHYSICS LETTERS A, 2006, 350 (1-2) : 81 - 86
  • [34] Running WILD: the case for exploring mixed parameter sets in sensitivity analysis
    Sharma, Prashant P.
    Vahtera, Varpu
    Kawauchi, Gisele Y.
    Giribet, Gonzalo
    CLADISTICS, 2011, 27 (05) : 538 - 549
  • [35] Exploring Hasimoto surfaces within equiform geometry in Minkowski space
    Elsharkawy, Ayman
    PHYSICA SCRIPTA, 2025, 100 (01)
  • [36] THE BIFURCATION OF STEADY GRAVITY WATER-WAVES IN (R,S) PARAMETER SPACE
    DOOLE, SH
    NORBURY, J
    JOURNAL OF FLUID MECHANICS, 1995, 302 : 287 - 305
  • [37] Bifurcation diagrams in estimated parameter space using a pruned extreme learning machine
    Itoh, Yoshitaka
    Adachi, Masaharu
    PHYSICAL REVIEW E, 2018, 98 (01)
  • [38] Self-similar attractor sets of the Lorenz model in parameter space
    Chen, Zeling
    Zhao, Hong
    CHAOS SOLITONS & FRACTALS, 2023, 173
  • [39] Detecting Unstable Sets in an Estimated Parameter Space for the H′enon Map
    Itoh, Yoshitaka
    JOURNAL OF APPLIED NONLINEAR DYNAMICS, 2023, 12 (03) : 579 - 589
  • [40] Rendering of Unfalsified PID Gain Sets for Parameter Space Control Design
    Saeki, Masami
    2013 9TH ASIAN CONTROL CONFERENCE (ASCC), 2013,