By studying a nonlinear model by inspecting a p-dimensional parameter space through ( p - 1 ) \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$(p-1)$$\end{document} -dimensional cuts, one can detect changes that are only determined by the geometry of the manifolds that make up the bifurcation set. We refer to these changes as geometric bifurcations. They can be understood within the framework of the theory of singularities for differentiable mappings and, in particular, of the Morse Theory. Working with a three-dimensional parameter space, geometric bifurcations are illustrated in two models of neuron activity: the Hindmarsh-Rose and the FitzHugh-Nagumo systems. Both are fast-slow systems with a small parameter that controls the time scale of a slow variable. Geometric bifurcations are observed on slices corresponding to fixed values of this distinguished small parameter, but they should be of interest to anyone studying bifurcation diagrams in the context of nonlinear phenomena.
机构:
Univ Nacl Autonoma Mexico, Dept Fis Altas Energias, Inst Ciencias Nucl, Apartado Postal 70-543, Ciudad De Mexico 04510, MexicoUniv Nacl Autonoma Mexico, Dept Fis Altas Energias, Inst Ciencias Nucl, Apartado Postal 70-543, Ciudad De Mexico 04510, Mexico
Romero, Jorge
Velasquez, Carlos A.
论文数: 0引用数: 0
h-index: 0
机构:
Univ Nacl Autonoma Mexico, Dept Fis Altas Energias, Inst Ciencias Nucl, Apartado Postal 70-543, Ciudad De Mexico 04510, MexicoUniv Nacl Autonoma Mexico, Dept Fis Altas Energias, Inst Ciencias Nucl, Apartado Postal 70-543, Ciudad De Mexico 04510, Mexico
Velasquez, Carlos A.
Vergara, J. David
论文数: 0引用数: 0
h-index: 0
机构:
Univ Nacl Autonoma Mexico, Dept Fis Altas Energias, Inst Ciencias Nucl, Apartado Postal 70-543, Ciudad De Mexico 04510, MexicoUniv Nacl Autonoma Mexico, Dept Fis Altas Energias, Inst Ciencias Nucl, Apartado Postal 70-543, Ciudad De Mexico 04510, Mexico
机构:
Tokyo Denki Univ, Dept Elect & Elect Engn, Adachi Ku, 5 Senju Asahicho, Tokyo, JapanTokyo Denki Univ, Dept Elect & Elect Engn, Adachi Ku, 5 Senju Asahicho, Tokyo, Japan
Itoh, Yoshitaka
Adachi, Masaharu
论文数: 0引用数: 0
h-index: 0
机构:
Tokyo Denki Univ, Dept Elect & Elect Engn, Adachi Ku, 5 Senju Asahicho, Tokyo, JapanTokyo Denki Univ, Dept Elect & Elect Engn, Adachi Ku, 5 Senju Asahicho, Tokyo, Japan