On zeroth-order general Randić index of conjugated unicyclic graphs

被引:0
|
作者
Hongbo Hua
Maolin Wang
Hongzhuan Wang
机构
[1] Huaiyin Institute of Technology,Department of Computing Science
来源
关键词
conjugated tree; conjugated unicyclic graph; zeroth-order general Randić index;
D O I
暂无
中图分类号
学科分类号
摘要
Let G be a graph and dv denote the degree of the vertex v in G. The zeroth-order general Randić index of a graph is defined as \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$R_{\alpha}^0(G)=\sum_{v\in V(G)}{d_{v}}^{\alpha}$$\end{document} where α is an arbitrary real number. In this paper, we investigate the zeroth-order general Randić index \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$R_{\alpha}^0(G)$$\end{document} of conjugated unicyclic graphs G (i.e., unicyclic graphs with a perfect matching) and sharp lower and upper bounds are obtained for \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$R_{\alpha}^0(G)$$\end{document} depending on α in different intervals.
引用
收藏
页码:737 / 748
页数:11
相关论文
共 50 条
  • [21] On the zeroth-order general Randic index of cacti
    Lin, Liang
    Lu, Mei
    ARS COMBINATORIA, 2012, 106 : 381 - 393
  • [22] Maximally edge-connected graphs and Zeroth-order general RandiA‡ index for
    Su, Guifu
    Xiong, Liming
    Su, Xiaofeng
    Li, Guojun
    JOURNAL OF COMBINATORIAL OPTIMIZATION, 2016, 31 (01) : 182 - 195
  • [23] Zeroth-order General Randic Index of Trees
    Vetrik, Tomas
    Balachandran, Selvaraj
    BOLETIM SOCIEDADE PARANAENSE DE MATEMATICA, 2022, 40
  • [24] On the zeroth-order general Randic index of unicycle graphs with k pendant vertices
    Li, Fan
    Lu, Mei
    ARS COMBINATORIA, 2013, 109 : 229 - 237
  • [25] On the Bounds of Zeroth-Order General Randic Index
    Matejic, Marjan
    Altindag, Erife Burcu Bozkurt
    Milovanovic, Emina
    Milovanovic, Igor
    FILOMAT, 2022, 36 (19) : 6443 - 6456
  • [26] Extremal (n,n + 1)-graphs with respected to zeroth- order general Randić index
    Shubo Chen
    Hanyuan Deng
    Journal of Mathematical Chemistry, 2007, 42 : 555 - 564
  • [27] A note on the general zeroth-order Randic coindex of graphs
    Milovanovic, Igor
    Matejic, Marjan
    Milovanovic, Emina
    CONTRIBUTIONS TO MATHEMATICS, 2020, 1 : 17 - 21
  • [28] Connected (n, m)-graphs with minimum and maximum zeroth-order general Randic index
    Hu, Yumei
    Li, Xueliang
    Shi, Yongtang
    Xu, Tianyi
    DISCRETE APPLIED MATHEMATICS, 2007, 155 (08) : 1044 - 1054
  • [29] Graphs with fixed number of pendent vertices and minimal Zeroth-order general Randic index
    Su, Guifu
    Tu, Jianhua
    Das, Kinkar Ch.
    APPLIED MATHEMATICS AND COMPUTATION, 2015, 270 : 705 - 710
  • [30] On zeroth-order general Randic index of quasi-tree graphs containing cycles
    Qiao, Shengning
    DISCRETE OPTIMIZATION, 2010, 7 (03) : 93 - 98