Monomial n-Lie algebras

被引:5
|
作者
Pozhidaev A.P.
机构
关键词
Linear Space; Arbitrary Element; Jacobi Identity; Elementary Property; Outer Product;
D O I
10.1007/BF02671633
中图分类号
学科分类号
摘要
The classes of monomial Ω-algebras defined by multilinear and weakly multilinear maps are studied. Necessary and sufficient conditions for these algebras to be n-Lie are specified. © 1998 Plenum Publishing Corporation.
引用
收藏
页码:307 / 322
页数:15
相关论文
共 50 条
  • [21] The Frattini Subalgebra of n-Lie Algebras
    Rui Pu BAI Department of Mathematics
    Acta Mathematica Sinica(English Series), 2007, 23 (05) : 847 - 856
  • [22] Nijenhuis Operators on n-Lie Algebras
    刘杰锋
    生云鹤
    周彦秋
    白承铭
    CommunicationsinTheoreticalPhysics, 2016, 65 (06) : 659 - 670
  • [23] T*-extension of n-Lie algebras
    Liu, Wenli
    Zhang, Zhixue
    LINEAR & MULTILINEAR ALGEBRA, 2013, 61 (04): : 527 - 542
  • [24] Engel subalgebras of n-Lie algebras
    Barnes, Donald W.
    ACTA MATHEMATICA SINICA-ENGLISH SERIES, 2008, 24 (01) : 159 - 166
  • [25] SCHREIER VARIETIES OF N-LIE ALGEBRAS
    KHASHINA, YA
    SIBERIAN MATHEMATICAL JOURNAL, 1991, 32 (02) : 348 - 349
  • [26] Centroid structures of n-Lie algebras
    Bai, Ruipu
    An, Hongwei
    Li, Zhenheng
    LINEAR ALGEBRA AND ITS APPLICATIONS, 2009, 430 (01) : 229 - 240
  • [27] Solvability in representations of n-Lie algebras
    Kasymov, SM
    SIBERIAN MATHEMATICAL JOURNAL, 1998, 39 (02) : 289 - 291
  • [28] Frattini theory for N-Lie algebras
    Williams, Michael Peretzian
    ALGEBRA AND DISCRETE MATHEMATICS, 2009, (02): : 108 - 115
  • [29] Engel subalgebras of n-Lie algebras
    Donald W. Barnes
    Acta Mathematica Sinica, English Series, 2008, 24 : 159 - 166
  • [30] The Frattini subalgebra of n-Lie algebras
    Bai, Rui Pu
    Chen, Liang Yun
    Meng, Dao Ji
    ACTA MATHEMATICA SINICA-ENGLISH SERIES, 2007, 23 (05) : 847 - 856