A lithium–oxygen battery based on lithium superoxide

被引:0
|
作者
Jun Lu
Yun Jung Lee
Xiangyi Luo
Kah Chun Lau
Mohammad Asadi
Hsien-Hau Wang
Scott Brombosz
Jianguo Wen
Dengyun Zhai
Zonghai Chen
Dean J. Miller
Yo Sub Jeong
Jin-Bum Park
Zhigang Zak Fang
Bijandra Kumar
Amin Salehi-Khojin
Yang-Kook Sun
Larry A. Curtiss
Khalil Amine
机构
[1] Argonne National Laboratory,Chemical Sciences and Engineering Division
[2] Hanyang University,Department of Energy Engineering
[3] Argonne National Laboratory,Materials Science Division
[4] University of Utah,Department of Metallurgical Engineering
[5] University of Illinois at Chicago,Department of Mechanical and Industrial Engineering
[6] Center for Nanoscale Materials,undefined
[7] Argonne National Laboratory,undefined
[8] Conn Center for Renewable Energy Research,undefined
[9] University of Louisville,undefined
来源
Nature | 2016年 / 529卷
关键词
D O I
暂无
中图分类号
学科分类号
摘要
Lithium–oxygen batteries allow oxygen to be reduced at the battery’s cathode when a current is drawn; in present-day batteries, this results in formation of Li2O2, but it is now shown that another high energy density material, namely LiO2, with better electronic conduction can be used instead as the discharge product, if the electrode is decorated with iridium nanoparticles.
引用
收藏
页码:377 / 382
页数:5
相关论文
共 50 条
  • [41] Life cycle assessment of lithium oxygen battery for electric vehicles
    Wang, Fenfen
    Deng, Yelin
    Yuan, Chris
    JOURNAL OF CLEANER PRODUCTION, 2020, 264
  • [42] Oxygen redox catalyst for rechargeable lithium-air battery
    Zhang, Sheng Shui
    Zhang, Zhengcheng
    Green Energy and Technology, 2015, 172 : 541 - 557
  • [43] Catalyst morphology matters for lithium-oxygen battery cathodes
    Oakes, Landon
    Muralidharan, Nitin
    Cohn, Adam P.
    Pint, Cary L.
    NANOTECHNOLOGY, 2016, 27 (49)
  • [44] Mesoporous Nanostructured Materials for the Positive Electrode of a Lithium–Oxygen Battery
    V. A. Bogdanovskaya
    O. V. Korchagin
    M. R. Tarasevich
    V. N. Andreev
    E. A. Nizhnikovskii
    M. V. Radina
    O. V. Tripachev
    V. V. Emets
    Protection of Metals and Physical Chemistry of Surfaces, 2018, 54 : 373 - 388
  • [45] A redox shuttle to facilitate oxygen reduction in the lithium air battery
    Lacey, Matthew J.
    Frith, James T.
    Owen, John R.
    ELECTROCHEMISTRY COMMUNICATIONS, 2013, 26 : 74 - 76
  • [46] Ultrasonic-assisted enhancement of lithium-oxygen battery
    Zhang, Jianli
    Zhou, Zhenkai
    Wang, Yang
    Chen, Qiang
    Hou, Guangya
    Tang, Yiping
    NANO ENERGY, 2022, 102
  • [47] Critical Factors Controlling Superoxide Reactions in Lithium-Oxygen Batteries
    Wang, Yu
    Lu, Ying-Rui
    Dong, Chung-Li
    Lu, Yi-Chun
    ACS ENERGY LETTERS, 2020, 5 (05): : 1355 - 1363
  • [48] Distribution of discharge products inside of the lithium/oxygen battery cathode
    Bardenhagen, Ingo
    Fenske, Mandus
    Fenske, Daniela
    Wittstock, Arne
    Baeumer, Marcus
    JOURNAL OF POWER SOURCES, 2015, 299 : 162 - 169
  • [49] Acceleration of Singlet Oxygen Evolution by Superoxide Dismutase Mimetics in Lithium-Oxygen Batteries
    Kim, Joo-Eun
    Lee, Hyun-Wook
    Kwak, Won-Jin
    ADVANCED FUNCTIONAL MATERIALS, 2022, 32 (52)
  • [50] Modeling the Effect of Lithium Superoxide Solvation and Surface Reduction Kinetics on Discharge Capacity in Lithium-Oxygen Batteries
    Batcho, Thomas P.
    Leverick, Graham
    Shao-Horn, Yang
    Thompson, Carl V.
    JOURNAL OF PHYSICAL CHEMISTRY C, 2019, 123 (23): : 14272 - 14282