A current perspective on snake venom composition and constituent protein families

被引:0
|
作者
Theo Tasoulis
Geoffrey K. Isbister
机构
[1] University of Newcastle,Clinical Toxicology Research Group
来源
Archives of Toxicology | 2023年 / 97卷
关键词
Snake venom; Snake venom proteomes; Snake venom protein families; Snake toxins; PLA; Three-finger toxins; Elapid; Viper;
D O I
暂无
中图分类号
学科分类号
摘要
Snake venoms are heterogeneous mixtures of proteins and peptides used for prey subjugation. With modern proteomics there has been a rapid expansion in our knowledge of snake venom composition, resulting in the venom proteomes of 30% of vipers and 17% of elapids being characterised. From the reasonably complete proteomic coverage of front-fanged snake venom composition (179 species—68 species of elapids and 111 species of vipers), the venoms of vipers and elapids contained 42 different protein families, although 18 were only reported in < 5% of snake species. Based on the mean abundance and occurrence of the 42 protein families, they can be classified into 4 dominant, 6 secondary, 14 minor, and 18 rare protein families. The dominant, secondary and minor categories account for 96% on average of a snake’s venom composition. The four dominant protein families are: phospholipase A2 (PLA2), snake venom metalloprotease (SVMP), three-finger toxins (3FTx), and snake venom serine protease (SVSP). The six secondary protein families are: L-amino acid oxidase (LAAO), cysteine-rich secretory protein (CRiSP), C-type lectins (CTL), disintegrins (DIS), kunitz peptides (KUN), and natriuretic peptides (NP). Venom variation occurs at all taxonomic levels, including within populations. The reasons for venom variation are complex, as variation is not always associated with geographical variation in diet. The four dominant protein families appear to be the most important toxin families in human envenomation, being responsible for coagulopathy, neurotoxicity, myotoxicity and cytotoxicity. Proteomic techniques can be used to investigate the toxicological profile of a snake venom and hence identify key protein families for antivenom immunorecognition.
引用
收藏
页码:133 / 153
页数:20
相关论文
共 50 条
  • [41] Contortrostatin, a snake venom protein, which is an inhibitor of breast cancer progression.
    Zhou, Q
    Ritter, M
    Markland, FS
    MOLECULAR BIOLOGY OF THE CELL, 1996, 7 : 2470 - 2470
  • [42] ANTITHROMBOTIC EFFECT OF PROTEIN-C ACTIVATOR FROM SNAKE-VENOM
    STRUKOVA, SM
    KOGAN, AE
    TARA, AA
    AAVIKSAAR, AA
    VOPROSY MEDITSINSKOI KHIMII, 1989, 35 (05): : 115 - 119
  • [43] Crotalid Snake Venom Subproteomes Unraveled by the Antiophidic Protein DM43
    Rocha, Surza L. G.
    Neves-Ferreira, Ana G. C.
    Trugilho, Monique R. O.
    Chapeaurouge, Alex
    Leon, Ileana R.
    Valente, Richard H.
    Domont, Gilberto B.
    Perales, Jonas
    JOURNAL OF PROTEOME RESEARCH, 2009, 8 (05) : 2351 - 2360
  • [44] PROTEIN-C FUNCTIONAL ASSAY USING SNAKE-VENOM ACTIVATOR
    NATHAN, IV
    PING, H
    PRADHAN, MM
    THROMBOSIS RESEARCH, 1987, 47 (01) : 85 - 91
  • [45] PROTON NMR ASSIGNMENTS AND SECONDARY STRUCTURE OF THE SNAKE-VENOM PROTEIN ECHISTATIN
    CHEN, Y
    PITZENBERGER, SM
    GARSKY, VM
    LUMMA, PK
    SANYAL, G
    BAUM, J
    BIOCHEMISTRY, 1991, 30 (50) : 11625 - 11636
  • [46] Snake Venom, A Natural Library of New Potential Therapeutic Molecules: Challenges and Current Perspectives
    Simoes-Silva, Rodrigo
    Alfonso, Jorge
    Gomez, Ana
    Holanda, Rudson J.
    Sobrinho, Juliana C.
    Zaqueo, Kayena D.
    Moreira-Dill, Leandro S.
    Kayano, Anderson M.
    Grabner, Fernando P.
    da Silva, Saulo L.
    Almeida, Jose R.
    Stabeli, Rodrigo G.
    Zuliani, Juliana P.
    Soares, Andreimar M.
    CURRENT PHARMACEUTICAL BIOTECHNOLOGY, 2018, 19 (04) : 308 - 335
  • [47] The protein composition of honeybee venom reconsidered by a proteomic approach
    Peiren, N
    Vanrobaeys, F
    de Graaf, DC
    Devreese, B
    Van Beeumen, J
    Jacobs, FJ
    BIOCHIMICA ET BIOPHYSICA ACTA-PROTEINS AND PROTEOMICS, 2005, 1752 (01): : 1 - 5
  • [48] Backbone Flexibility Controls the Activity and Specificity of a Protein-Protein Interface: Specificity in Snake Venom Metalloproteases
    Wallnoefer, Hannes G.
    Lingott, Torsten
    Maria Gutierrez, Jose
    Merfort, Irmgard
    Liedl, Klaus R.
    JOURNAL OF THE AMERICAN CHEMICAL SOCIETY, 2010, 132 (30) : 10330 - 10337
  • [49] Elapid Snake Venom Analyses Show the Specificity of the Peptide Composition at the Level of Genera Naja and Notechis
    Munawar, Aisha
    Trusch, Maria
    Georgieva, Dessislava
    Hildebrand, Diana
    Kwiatkowski, Marcel
    Behnken, Henning
    Harder, Soenke
    Arni, Raghuvir
    Spencer, Patrick
    Schlueter, Hartmut
    Betzel, Christian
    TOXINS, 2014, 6 (03): : 850 - 868
  • [50] Size Matters: An Evaluation of the Molecular Basis of Ontogenetic Modifications in the Composition of Bothrops jararacussu Snake Venom
    Freitas-de-Sousa, Luciana A.
    Nachtigall, Pedro G.
    Fortes-Junior, Jose A.
    Holding, Matthew L.
    Nystrom, Gunnar S.
    Ellsworth, Schyler A.
    Guimaries, Noranathan C.
    Tioyama, Emilly
    Ortiz, Flora
    Silva, Bruno R.
    Kunz, Tobias S.
    Junqueira-de-Azevedo, Inicio L. M.
    Grazziotin, Felipe G.
    Rokyta, Darin R.
    Moura-da-Silva, Ana M.
    TOXINS, 2020, 12 (12)