Analysis of the radial potential structure and neutron production rate in the spherical inertial electrostatic confinement fusion devices

被引:0
|
作者
M. A. Ramzanpour
M. R. Pahlavani
机构
[1] University of Mazandaran,Department of Nuclear Physics, Faculty of Basic Sciences
来源
Indian Journal of Physics | 2017年 / 91卷
关键词
Inertial electrostatic confinement fusion (IECF); The Poisson equation; Deuteron and electron distribution functions; Potential structure; Neutron production rate; 52.58.QV;
D O I
暂无
中图分类号
学科分类号
摘要
The radial dependent potential and neutron production rate in spherical inertial electrostatic confinement fusion (IECF) devices is investigated. The electrostatic potential is determined by solving the Poisson equation for various deuteron and electron distribution functions. The fusion reaction rates are determined using energy distribution function. Also, dependence of potential structure and neutron production rate on some important parameters as the ion and electron convergence, working pressure, kinetic energy of the secondary electrons emitted from the cathode and the fraction of secondary electrons drawn inside the cathode are studied. Total produced neutrons as a function of input power at different working conditions are also obtained.
引用
收藏
页码:63 / 69
页数:6
相关论文
共 50 条
  • [21] Study on an inertial electrostatic confinement fusion as a portable neutron source
    Ohnishi, Masami
    Yamamoto, Yasushi
    Hasegawa, Mitsunori
    Yoshikawa, Kiyoshi
    Miley, George H.
    Fusion Engineering and Design, 1998, 42 (Pt C): : 207 - 211
  • [22] The Influence of Cathode Voltage and Discharge Current on Neutron Production Rate of Inertial Electrostatic Confinement Fusion (IR-IECF)
    Ebrahimi, E. Haji
    Amrollahi, R.
    Sadighzadeh, A.
    Torabi, M.
    Sedaghat, M.
    Sabri, R.
    Pourshahab, B.
    Damideh, V.
    JOURNAL OF FUSION ENERGY, 2013, 32 (01) : 62 - 65
  • [23] The Influence of Cathode Voltage and Discharge Current on Neutron Production Rate of Inertial Electrostatic Confinement Fusion (IR-IECF)
    E. Haji Ebrahimi
    R. Amrollahi
    A. Sadighzadeh
    M. Torabi
    M. Sedaghat
    R. Sabri
    B. Pourshahab
    V. Damideh
    Journal of Fusion Energy, 2013, 32 : 62 - 65
  • [24] Comparison of spherical and cylindrical cathode geometries in inertial electrostatic confinement devices
    Egle, Brian J.
    Santarius, John F.
    Kulcinski, Gerald L.
    FUSION SCIENCE AND TECHNOLOGY, 2007, 52 (04) : 1110 - 1113
  • [25] Fast neutral generation by charge exchange reaction and its effect on neutron production rate in inertial electrostatic confinement fusion systems
    Yoshinaga, S
    Matsuura, H
    Nakao, Y
    Kudo, K
    FUSION SCIENCE AND TECHNOLOGY, 2005, 47 (04) : 1275 - 1279
  • [26] NEW INSIGHT INTO GRIDDED INERTIAL ELECTROSTATIC CONFINEMENT (IEC) FUSION DEVICES
    Kulcinski, G. L.
    Santarius, J. F.
    Emmert, G. A.
    Bonomo, R. L.
    Alderson, E. C.
    Becerra, G. E.
    Campbell, L.
    Donovan, D. C.
    Egle, B. J.
    Garrison, L. M.
    McEvoy, A. M.
    Michalak, M. K.
    Schuff, C. M.
    Zenobia, S. J.
    FUSION SCIENCE AND TECHNOLOGY, 2011, 60 (02) : 607 - 614
  • [27] Neutron flux assessment of a neutron irradiation facility based on inertial electrostatic confinement fusion
    Sztejnberg Goncalves-Carralves, M. L.
    Miller, M. E.
    APPLIED RADIATION AND ISOTOPES, 2015, 106 : 95 - 100
  • [28] Optimizing neutron production rates from D-D fusion in an inertial electrostatic confinement device
    Wehmeyer, AL
    Radel, RF
    Kulcinski, GL
    FUSION SCIENCE AND TECHNOLOGY, 2005, 47 (04) : 1260 - 1264
  • [29] Evaluation of the neutron production rate using D-D and D-T fuel in an inertial electrostatic confinement fusion device
    Ramzanpour, M. A.
    Pahlavani, M. R.
    CHINESE JOURNAL OF PHYSICS, 2018, 56 (01) : 23 - 29
  • [30] Compact inertial electrostatic confinement D-D fusion neutron generator
    Sharma, Surender Kumar
    Tewari, Somesh Vinayak
    Waghmare, Nitin
    Raju, S. D. V. S. Jagannadha
    Rao, K. Divakar
    Sharma, Archana
    ANNALS OF NUCLEAR ENERGY, 2021, 159