Three-Dimensional Calculations of the Flow Field around a Turbine Blade with Film Cooling Injection near the Leading Edge

被引:0
|
作者
G.S. Theodoridis
D. Lakehal
W. Rodi
机构
[1] University of Karlsruhe,Institute for Hydromechanics
来源
关键词
film cooling; showerhead injection; velocity field; computational fluid mechanics; turbulence modelling;
D O I
暂无
中图分类号
学科分类号
摘要
Injection of coolant air from a showerhead injection system at the leading edge of a high pressure turbine blade is investigated using a fully implicit three-dimensional finite-volume method on multi-block grids. For various blowing rates, the calculation results for the velocity and pressure fields and turbulence intensity are compared with available experimental data. The present method yields excellent agreement with the experiments for the isentropic Mach number distributions on the blade surface. The standardk–ε turbulence model with wall functions is already capable of capturing the major details of the flow field including the injection-induced secondary-flow vortices, particularly so on the suction side. On the pressure side, however, the lateral jet spreading is under-predicted somewhat together with an exaggeration of the near-wall sink-flow vortices. On this side with convex walls, where turbulence anisotropy is appreciable according to the experiments, overall better predictions were obtained with the anisotropy correction of Bergeles et al. [23] promoting the Reynolds stress in the lateral direction. The correction has no beneficial effect on the suction side with concave walls where the turbulence anisotropy was observed to be much smaller.
引用
收藏
页码:57 / 83
页数:26
相关论文
共 50 条
  • [21] Influence of leading-edge lateral injection angles on the film cooling effectiveness of a gas turbine blade
    Abbès Azzi
    Bassam Ali Jubran
    Heat and Mass Transfer, 2004, 40 : 501 - 508
  • [22] Influence of leading-edge lateral injection angles on the film cooling effectiveness of a gas turbine blade
    Azzi, A
    Ali Jubran, B
    HEAT AND MASS TRANSFER, 2004, 40 (6-7) : 501 - 508
  • [23] AN EXPERIMENTAL-STUDY OF FILM-COOLING EFFECTIVENESS NEAR THE LEADING-EDGE OF A TURBINE BLADE
    SALCUDEAN, M
    GARTSHORE, I
    ZHANG, K
    MCLEAN, I
    JOURNAL OF TURBOMACHINERY-TRANSACTIONS OF THE ASME, 1994, 116 (01): : 71 - 79
  • [24] An Experimental Investigation of Flow Characteristics Downstream of Discrete Film Cooling Holes on Turbine Blade Leading Edge
    Li Shao-hua
    Qu Hong-wei
    Wang Mei-li
    Guo Ting-ting
    MANUFACTURING SCIENCE AND TECHNOLOGY, PTS 1-8, 2012, 383-390 : 5553 - 5560
  • [25] Application of local indentations for film cooling of gas turbine blade leading edge
    Petelchyts, V. Yu.
    Khalatov, A. A.
    Pysmennyi, D. N.
    Dashevskyy, Yu. Ya.
    THERMOPHYSICS AND AEROMECHANICS, 2016, 23 (05) : 713 - 720
  • [26] Convective film cooling over a representative turbine blade leading-edge
    Thakur, S
    Wright, J
    Shyy, W
    INTERNATIONAL JOURNAL OF HEAT AND MASS TRANSFER, 1999, 42 (12) : 2269 - 2285
  • [27] Experimental investigation of film cooling heat transfer on turbine blade leading edge
    Northwestern Polytechnical Univ, Xi'an, China
    Tuijin Jishu, 2 (64-68):
  • [28] Application of local indentations for film cooling of gas turbine blade leading edge
    V. Yu. Petelchyts
    A. A. Khalatov
    D. N. Pysmennyi
    Yu. Ya. Dashevskyy
    Thermophysics and Aeromechanics, 2016, 23 : 713 - 720
  • [29] Influence of Turbine Blade Leading Edge Profile on Film Cooling With Shaped Holes
    Zhang, Mingjie
    Wang, Nian
    Chen, Andrew F.
    Han, Je-Chin
    JOURNAL OF THERMAL SCIENCE AND ENGINEERING APPLICATIONS, 2018, 10 (05)
  • [30] Experimental study on film cooling of turbine blade leading edge in deposition environment
    Yang X.
    Yu T.
    Hu Y.
    Chang J.
    Beijing Hangkong Hangtian Daxue Xuebao/Journal of Beijing University of Aeronautics and Astronautics, 2021, 47 (11): : 2189 - 2199