On translation and dilation invariant subspaces of L p (ℝn), 0 < p < 1

被引:0
|
作者
Aleksandrov A.B. [1 ]
机构
[1] St.Petersburg Department, Steklov Mathematical Institute, St.Petersburg
基金
俄罗斯基础研究基金会;
关键词
Compact Subset; Lebesgue Measure; Invariant Subspace; Linear Hull; Hardy Class;
D O I
10.1007/s10958-008-0025-0
中图分类号
学科分类号
摘要
We prove that each translation and dilation invariant subspace X ⊂ L p (n), X ≠ L p (ℝn), is contained in a maximal translation and dilation invariant subspace of L p (ℝn). Moreover, we prove that the set of all maximal translation and dilation invariant subspaces of L p (ℝn) has the power of continuum. Bibliography: 6 titles. © 2008 Springer Science+Business Media, Inc.
引用
收藏
页码:785 / 794
页数:9
相关论文
共 50 条
  • [11] On Copson's inequalities for 0 < p < 1
    Gao, Peng
    Zhao, HuaYu
    JOURNAL OF INEQUALITIES AND APPLICATIONS, 2020, 2020 (01):
  • [12] TheSpacesbpwith0<p<1
    HU Zhangjian LIU TaishunDepartment of Mathematics University of Science and Technology of China Hefei ChinaDepartment of Mathematics Huzhou Teachers College Huzhou China
    数学季刊, 2004, (04) : 331 - 337
  • [13] Translation-invariant operators on Lorentz spaces L(1,q) with 0<q<1
    Colzani, L
    Sjögren, P
    STUDIA MATHEMATICA, 1999, 132 (02) : 101 - 124
  • [14] Operators from HP to lq for 0 <p <1<q <∞
    Blasco, Oscar
    Function Spaces, 2007, 435 : 81 - 87
  • [15] The Lp Minkowski problem for polytopes for 0 < p < 1
    Zhu, Guangxian
    JOURNAL OF FUNCTIONAL ANALYSIS, 2015, 269 (04) : 1070 - 1094
  • [16] On the Lp torsional Minkowski problem for 0 < p < 1
    Hu, Jinrong
    Liu, Jiaqian
    ADVANCES IN APPLIED MATHEMATICS, 2021, 128
  • [17] COEFFICIENT ESTIMATES FOR Hp SPACES WITH 0 < p < 1
    Brevig, Ole Fredrik
    Saksman, Eero
    PROCEEDINGS OF THE AMERICAN MATHEMATICAL SOCIETY, 2020, 148 (09) : 3911 - 3924
  • [18] The Lp-mixed quermassintegrals for 0 < p < 1
    Zhao, Chang-Jian
    Bencze, Mihaly
    ACTA UNIVERSITATIS SAPIENTIAE-MATHEMATICA, 2021, 13 (02) : 519 - 528
  • [19] The Orlicz version of the Lp Minkowski problem for -n < p < 0
    Bianchi, Gabriele
    Boroczky, Karoly J.
    Colesanti, Andrea
    ADVANCES IN APPLIED MATHEMATICS, 2019, 111
  • [20] The "Full Muntz Theorem" in Lp [0,1] for 0 < p < ∞
    Erdélyi, T
    Johnson, WB
    JOURNAL D ANALYSE MATHEMATIQUE, 2001, 84 (1): : 145 - 172