Ultrasmall Li2S Nanoparticles Anchored in Graphene Nanosheets for High-Energy Lithium-Ion Batteries

被引:0
|
作者
Kai Zhang
Lijiang Wang
Zhe Hu
Fangyi Cheng
Jun Chen
机构
[1] Key Laboratory of Advanced Energy Materials Chemistry (Ministry of Education),
[2] Collaborative Innovation Center of Chemical Science and Engineering,undefined
[3] Chemistry College,undefined
[4] Nankai University,undefined
来源
关键词
D O I
暂无
中图分类号
学科分类号
摘要
Li2S has a high theoretical capacity of 1166 mAh g−1, but it suffers from limited rate and cycling performance. Herein we reported in-situ synthesis of thermally exfoliated graphene−Li2S (in-situ TG−Li2S) nanocomposite and its application as a superior cathode material alternative to sulfur. Li2S nanoparticles with the size of ~8.5 nm homogeneously anchored in graphene nanosheets were prepared via chemical reduction of pre-sublimed sulfur by lithium triethylborohydride (LiEt3BH). The in-situ TG−Li2S nanocomposite exhibited an initial capacity of 1119 mAh g−1 Li2S (1609 mAh g−1 S) with a negligible charged potential barrier in the first cycle. The discharge capacity retained 791 mAh g−1 Li2S (1137 mAh g−1 S) after 100 cycles at 0.1C and exceeded 560 mAh g−1 Li2S (805 mAh g−1 S) at a high rate of 2C. Moreover, coupling the composite with Si thin film anode, a Li2S/Si full cell was produced, delivering a high specific capacity of ~900 mAh g−1 Li2S (1294 mAh g−1 S). The outstanding electrode performance of in-situ TG−Li2S composite was attributed to the well dispersed small Li2S nanoparticles and highly conductive graphene nanosheets, which provided merits of facile ionic and electronic transport, efficient utilization of the active material and flexible accommodation of volume change.
引用
收藏
相关论文
共 50 条
  • [41] SnS@C nanoparticles anchored on graphene oxide as high-performance anode materials for lithium-ion batteries
    Mei, Jing
    Han, Jinlu
    Wu, Fujun
    Pan, Qichang
    Zheng, Fenghua
    Jiang, Juantao
    Huang, Youguo
    Wang, Hongqiang
    Liu, Kui
    Li, Qingyu
    FRONTIERS IN CHEMISTRY, 2023, 10
  • [42] Harnessing Steric Separation of Freshly Nucleated Li2S Nanoparticles for Bottom-Up Assembly of High-Performance Cathodes for Lithium-Sulfur and Lithium-Ion Batteries
    Wu, Feixiang
    Kim, Hyea
    Magasinski, Alexandre
    Lee, Jung Tae
    Lin, Huan-Ting
    Yushin, Gleb
    ADVANCED ENERGY MATERIALS, 2014, 4 (11)
  • [43] Mesoporous carbon anchored with SnS2 nanosheets as an advanced anode for lithium-ion batteries
    Li, Jianping
    Wu, Ping
    Lou, Feijian
    Zhang, Peng
    Tang, Yawen
    Zhou, Yiming
    Lu, Tianhong
    ELECTROCHIMICA ACTA, 2013, 111 : 862 - 868
  • [44] Amorphous/crystalline hybrid MoO2 nanosheets for high-energy lithium-ion capacitors
    Zhao, Xu
    Wang, Hong-En
    Cao, Jian
    Cai, Wei
    Sui, Jiehe
    CHEMICAL COMMUNICATIONS, 2017, 53 (77) : 10723 - 10726
  • [45] High Capacity of SnO2 Nanoparticles Decorated Graphene as an Anode for Lithium-Ion Batteries
    Guo, Qi
    Qin, Xue
    ECS SOLID STATE LETTERS, 2013, 2 (06) : M41 - M43
  • [46] Amorphous red phosphorus nanosheets anchored on graphene layers as high performance anodes for lithium ion batteries
    Sun, Li
    Zhang, Yu
    Zhang, Deyang
    Zhang, Yihe
    NANOSCALE, 2017, 9 (46) : 18552 - 18560
  • [47] Controlled Prelithiation of PbS to Pb/Li2S for High Initial Coulombic Efficiency in Lithium Ion Batteries
    Guo, Alan
    Chen, Eric
    Heller, Adam
    Mullins, C. Buddie
    JOURNAL OF THE ELECTROCHEMICAL SOCIETY, 2019, 166 (10) : A1939 - A1943
  • [48] Electrochemical performance of graphene nanosheets as anode material for lithium-ion batteries
    Guo, Peng
    Song, Huaihe
    Chen, Xiaohong
    ELECTROCHEMISTRY COMMUNICATIONS, 2009, 11 (06) : 1320 - 1324
  • [49] High-quality mesoporous graphene particles as high-energy and fast-charging anodes for lithium-ion batteries
    Runwei Mo
    Fan Li
    Xinyi Tan
    Pengcheng Xu
    Ran Tao
    Gurong Shen
    Xing Lu
    Fang Liu
    Li Shen
    Bin Xu
    Qiangfeng Xiao
    Xiang Wang
    Chongmin Wang
    Jinlai Li
    Ge Wang
    Yunfeng Lu
    Nature Communications, 10
  • [50] Nanodiamond-Enhanced Nanofiber Separators for High-Energy Lithium-Ion Batteries
    Narla, Aashray
    Fu, Wenbin
    Kulaksizoglu, Alp
    Kume, Atsushi
    Johnson, Billy R.
    Raman, Ashwin Sankara
    Wang, Fujia
    Magasinski, Alexandre
    Kim, Doyoub
    Kousa, Mohammed
    Xiao, Yiran
    Jhulki, Samik
    Turcheniuk, Kostiantyn
    Yushin, Gleb
    ACS APPLIED MATERIALS & INTERFACES, 2023, 15 (27) : 32678 - 32686