Moment Bounds for a Generalized Anderson Model with Gaussian Noise Rough in Space

被引:0
|
作者
Junfeng Liu
机构
[1] Nanjing Audit University,School of Statistics and Data Science
来源
关键词
Anderson model; Fractional Brownian motion; Gaussian noise; Malliavin calculus; Feynman–Kac representation; Moment bounds; Hölder continuity; 60G22; 60H15; 60H07;
D O I
暂无
中图分类号
学科分类号
摘要
In this article, we study a generalized Anderson model driven by Gaussian noise which is white/colored in time and has the covariance of a fractional Brownian motion with Hurst index H<12\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$H<\frac{1}{2}$$\end{document} in space. We prove the existence of the solution in the Skorohod sense and obtain upper and lower bounds for the pth moments for all p=2,3,…\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$p=2,3,\ldots $$\end{document}. Then we can prove that solution of this equation in the Skorohod sense is weakly intermittent. Hölder continuity of the solution with respect to the time and space variables is also deduced.
引用
收藏
页码:167 / 200
页数:33
相关论文
共 50 条
  • [21] Intermittency for the parabolic Anderson model of Skorohod type driven by a rough noise
    Ma, Nicolas
    Nualart, David
    Xia, Panqiu
    ELECTRONIC COMMUNICATIONS IN PROBABILITY, 2020, 25 : 1 - 10
  • [22] Nonlinear fractional stochastic heat equation driven by Gaussian noise rough in space
    Liu, Junfeng
    Mao, Lei
    BULLETIN DES SCIENCES MATHEMATIQUES, 2022, 181
  • [23] Gaussian Bounds for Noise Correlation of Functions
    Mossel, Elchanan
    GEOMETRIC AND FUNCTIONAL ANALYSIS, 2010, 19 (06) : 1713 - 1756
  • [24] Gaussian Bounds for Noise Correlation of Functions
    Elchanan Mossel
    Geometric and Functional Analysis, 2010, 19 : 1713 - 1756
  • [25] A filter for a state space model with fractional Gaussian noise
    Elliott, Robert J.
    Deng, Jia
    AUTOMATICA, 2010, 46 (10) : 1689 - 1695
  • [26] Moment asymptotics for parabolic Anderson equation with fractional time-space noise: In Skorokhod regime
    Chen, Xia
    ANNALES DE L INSTITUT HENRI POINCARE-PROBABILITES ET STATISTIQUES, 2017, 53 (02): : 819 - 841
  • [27] A simple proof of distance bounds for Gaussian rough paths
    Riedel, Sebastian
    Xu, Weijun
    ELECTRONIC JOURNAL OF PROBABILITY, 2013, 18 : 1 - 22
  • [28] Precise high moment asymptotics for parabolic Anderson model with log-correlated Gaussian field
    Lyu, Yangyang
    STATISTICS & PROBABILITY LETTERS, 2020, 158
  • [29] Noise Moment and Parameter Estimation of State-Space Model
    Kost, Oliver
    Dunik, Jindrich
    Straka, Ondrej
    IFAC PAPERSONLINE, 2018, 51 (15): : 891 - 896
  • [30] Generalized Gaussian bounds for discrete convolution powers
    Coulombel, Jean-Francois
    Faye, Gregory
    REVISTA MATEMATICA IBEROAMERICANA, 2022, 38 (05) : 1553 - 1604