Moment Bounds for a Generalized Anderson Model with Gaussian Noise Rough in Space

被引:0
|
作者
Junfeng Liu
机构
[1] Nanjing Audit University,School of Statistics and Data Science
来源
关键词
Anderson model; Fractional Brownian motion; Gaussian noise; Malliavin calculus; Feynman–Kac representation; Moment bounds; Hölder continuity; 60G22; 60H15; 60H07;
D O I
暂无
中图分类号
学科分类号
摘要
In this article, we study a generalized Anderson model driven by Gaussian noise which is white/colored in time and has the covariance of a fractional Brownian motion with Hurst index H<12\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$H<\frac{1}{2}$$\end{document} in space. We prove the existence of the solution in the Skorohod sense and obtain upper and lower bounds for the pth moments for all p=2,3,…\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$p=2,3,\ldots $$\end{document}. Then we can prove that solution of this equation in the Skorohod sense is weakly intermittent. Hölder continuity of the solution with respect to the time and space variables is also deduced.
引用
收藏
页码:167 / 200
页数:33
相关论文
共 50 条
  • [1] Moment Bounds for a Generalized Anderson Model with Gaussian Noise Rough in Space
    Liu, Junfeng
    JOURNAL OF THEORETICAL PROBABILITY, 2023, 36 (01) : 167 - 200
  • [2] Space-time fractional Anderson model driven by Gaussian noise rough in space
    Liu, Junfeng
    Wang, Zhi
    Wang, Zengwu
    STOCHASTICS AND DYNAMICS, 2023, 23 (01)
  • [3] Parabolic Anderson model with rough or critical Gaussian noise
    Chen, Xia
    ANNALES DE L INSTITUT HENRI POINCARE-PROBABILITES ET STATISTIQUES, 2019, 55 (02): : 941 - 976
  • [4] Parabolic Anderson model with a fractional Gaussian noise that is rough in time
    Chen, Xia
    ANNALES DE L INSTITUT HENRI POINCARE-PROBABILITES ET STATISTIQUES, 2020, 56 (02): : 792 - 825
  • [5] Parabolic Anderson Model with Space-Time Homogeneous Gaussian Noise and Rough Initial Condition
    Raluca M. Balan
    Le Chen
    Journal of Theoretical Probability, 2018, 31 : 2216 - 2265
  • [6] Parabolic Anderson Model with Space-Time Homogeneous Gaussian Noise and Rough Initial Condition
    Balan, Raluca M.
    Chen, Le
    JOURNAL OF THEORETICAL PROBABILITY, 2018, 31 (04) : 2216 - 2265
  • [7] Intermittency for the Hyperbolic Anderson Model with rough noise in space
    Balan, Raluca M.
    Jolis, Maria
    Quer-Sardanyons, Lluis
    STOCHASTIC PROCESSES AND THEIR APPLICATIONS, 2017, 127 (07) : 2316 - 2338
  • [8] Parabolic Anderson model with rough noise in space and rough initial conditions
    Balan, Raluca
    Chen, Le
    Ma, Yiping
    ELECTRONIC COMMUNICATIONS IN PROBABILITY, 2022, 27
  • [9] Spatial asymptotics for the parabolic Anderson model driven by a Gaussian rough noise
    Chen Xia
    Hu Yaozhong
    David, Nualart
    Samy, Tindel
    ELECTRONIC JOURNAL OF PROBABILITY, 2017, 22 : 1 - 38
  • [10] High order Anderson parabolic model driven by rough noise in space
    Cao, Qiyong
    Gao, Hongjun
    STOCHASTICS AND DYNAMICS, 2022, 22 (01)