CO2 Mitigation Potential of Plug-in Hybrid Electric Vehicles larger than expected

被引:0
|
作者
P. Plötz
S. A. Funke
P. Jochem
M. Wietschel
机构
[1] Fraunhofer Institute for Systems and Innovation Research ISI,
[2] Institute for Industrial Production (IIP),undefined
[3] Chair of Energy Economics,undefined
[4] Karlsruhe Institute of Technology (KIT),undefined
来源
关键词
D O I
暂无
中图分类号
学科分类号
摘要
The actual contribution of plug-in hybrid and battery electric vehicles (PHEV and BEV) to greenhouse gas mitigation depends on their real-world usage. Often BEV are seen as superior as they drive only electrically and do not have any direct emissions during driving. However, empirical evidence on which vehicle electrifies more mileage with a given battery capacity is lacking. Here, we present the first systematic overview of empirical findings on actual PHEV and BEV usage for the US and Germany. Contrary to common belief, PHEV with about 60 km of real-world range currently electrify as many annual vehicles kilometres as BEV with a much smaller battery. Accordingly, PHEV recharged from renewable electricity can highly contribute to green house gas mitigation in car transport. Including the higher CO2eq emissions during the production phase of BEV compared to PHEV, PHEV show today higher CO2eq savings then BEVs compared to conventional vehicles. However, for significant CO2eq improvements of PHEV and particularly of BEVs the decarbonisation of the electricity system should go on.
引用
收藏
相关论文
共 50 条
  • [21] Battery evaluation for plug-in hybrid electric vehicles
    Duvall, MS
    2005 IEEE Vehicle Power and Propulsion Conference (VPPC), 2005, : 338 - 343
  • [22] Plug-in hybrid electric vehicles with full performance
    Sreedhar, V.
    2006 IEEE Conference on Electric & Hybrid Vehicles, 2006, : 119 - 125
  • [23] AN OPTIMIZATION MODEL FOR PLUG-IN HYBRID ELECTRIC VEHICLES
    Malikopoulos, Andreas A.
    Smith, David E.
    PROCEEDINGS OF THE ASME INTERNAL COMBUSTION ENGINE DIVISION FALL TECHNICAL CONFERENCE (ICEF), 2011, : 739 - 748
  • [24] Maximizing Economy of Plug-In Hybrid Electric Vehicles
    Hu Xiaosong
    Yang Yalian
    PROCEEDINGS OF THE 35TH CHINESE CONTROL CONFERENCE 2016, 2016, : 8862 - 8867
  • [25] Evaluating plug-in vehicles (plug-in hybrid and battery electric vehicles) using standard dynamometer protocols
    Duoba, Michael
    Lohse-Busch, Henning
    Rask, Eric
    World Electric Vehicle Journal, 2012, 5 (01): : 196 - 209
  • [26] Impact of SiC Devices on Hybrid Electric and Plug-In Hybrid Electric Vehicles
    Zhang, Hui
    Tolbert, Leon M.
    Ozpineci, Burak
    IEEE TRANSACTIONS ON INDUSTRY APPLICATIONS, 2011, 47 (02) : 912 - 921
  • [27] A Comparison of Hybrid Electric Vehicles with Plug-In Hybrid Electric Vehicles for End Customer Deliveries
    Doppstadt, Christian
    OPERATIONS RESEARCH PROCEEDINGS 2015, 2017, : 251 - 257
  • [28] Impact of SiC Devices on Hybrid Electric and Plug-in Hybrid Electric Vehicles
    Zhang, Hui
    Tolbertz, Leon M.
    Ozpineci, Burak
    2008 IEEE INDUSTRY APPLICATIONS SOCIETY ANNUAL MEETING, VOLS 1-5, 2008, : 359 - +
  • [29] Energy Efficiency Ratio (EER) of Plug-In Hybrid Electric Vehicles in Scope of Plug-In Hybrid Electric Factor (Pihef)
    Nedeljkovic, David
    2013 IEEE EUROCON, 2013, : 1200 - 1204
  • [30] Study on Hybrid Power System for Plug-in Hybrid Electric Vehicles
    Wang Yi
    He Hong-wen
    Xiong Rui
    PROCEEDINGS OF 2010 3RD IEEE INTERNATIONAL CONFERENCE ON COMPUTER SCIENCE AND INFORMATION TECHNOLOGY (ICCSIT 2010), VOL 7, 2010, : 486 - 490