Jump and Variational Inequalities for Rough Operators

被引:0
|
作者
Yong Ding
Guixiang Hong
Honghai Liu
机构
[1] Beijing Normal University (BNU),Laboratory of Mathematics and Complex Systems, School of Mathematical Sciences
[2] Ministry of Education of China,School of Mathematics and Statistics
[3] Wuhan University,School of Mathematics and Information Science
[4] Henan Polytechnic University,undefined
来源
Journal of Fourier Analysis and Applications | 2017年 / 23卷
关键词
Jump inequalities; Variational inequalities; Singular integrals; Averaging operators; Rough kernels; Primary 42B25; Secondary 42B20;
D O I
暂无
中图分类号
学科分类号
摘要
In this paper, we systematically study jump and variational inequalities for rough operators, whose research have been initiated by Jones et al. More precisely, we show some jump and variational inequalities for the families T:={Tε}ε>0\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\mathcal T:=\{T_\varepsilon \}_{\varepsilon >0}$$\end{document} of truncated singular integrals and M:={Mt}t>0\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\mathcal M:=\{M_t\}_{t>0}$$\end{document} of averaging operators with rough kernels, which are defined respectively by Tεf(x)=∫|y|>εΩ(y′)|y|nf(x-y)dy\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\begin{aligned} T_\varepsilon f(x)=\int _{|y|>\varepsilon }\frac{\Omega (y')}{|y|^n}f(x-y)dy \end{aligned}$$\end{document}and Mtf(x)=1tn∫|y|<tΩ(y′)f(x-y)dy,\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\begin{aligned} M_t f(x)=\frac{1}{t^n}\int _{|y|<t}\Omega (y')f(x-y)dy, \end{aligned}$$\end{document}where the kernel Ω\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\Omega $$\end{document} belongs to Llog+L(Sn-1)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$L\log ^+\!\!L(\mathbf S^{n-1})$$\end{document} or H1(Sn-1)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$H^1(\mathbf S^{n-1})$$\end{document} or Gα(Sn-1)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\mathcal {G}_\alpha (\mathbf S^{n-1})$$\end{document} (the condition introduced by Grafakos and Stefanov). Some of our results are sharp in the sense that the underlying assumptions are the best known conditions for the boundedness of corresponding maximal operators.
引用
收藏
页码:679 / 711
页数:32
相关论文
共 50 条