Jump and Variational Inequalities for Rough Operators

被引:0
|
作者
Yong Ding
Guixiang Hong
Honghai Liu
机构
[1] Beijing Normal University (BNU),Laboratory of Mathematics and Complex Systems, School of Mathematical Sciences
[2] Ministry of Education of China,School of Mathematics and Statistics
[3] Wuhan University,School of Mathematics and Information Science
[4] Henan Polytechnic University,undefined
关键词
Jump inequalities; Variational inequalities; Singular integrals; Averaging operators; Rough kernels; Primary 42B25; Secondary 42B20;
D O I
暂无
中图分类号
学科分类号
摘要
In this paper, we systematically study jump and variational inequalities for rough operators, whose research have been initiated by Jones et al. More precisely, we show some jump and variational inequalities for the families T:={Tε}ε>0\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\mathcal T:=\{T_\varepsilon \}_{\varepsilon >0}$$\end{document} of truncated singular integrals and M:={Mt}t>0\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\mathcal M:=\{M_t\}_{t>0}$$\end{document} of averaging operators with rough kernels, which are defined respectively by Tεf(x)=∫|y|>εΩ(y′)|y|nf(x-y)dy\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\begin{aligned} T_\varepsilon f(x)=\int _{|y|>\varepsilon }\frac{\Omega (y')}{|y|^n}f(x-y)dy \end{aligned}$$\end{document}and Mtf(x)=1tn∫|y|<tΩ(y′)f(x-y)dy,\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\begin{aligned} M_t f(x)=\frac{1}{t^n}\int _{|y|<t}\Omega (y')f(x-y)dy, \end{aligned}$$\end{document}where the kernel Ω\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\Omega $$\end{document} belongs to Llog+L(Sn-1)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$L\log ^+\!\!L(\mathbf S^{n-1})$$\end{document} or H1(Sn-1)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$H^1(\mathbf S^{n-1})$$\end{document} or Gα(Sn-1)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\mathcal {G}_\alpha (\mathbf S^{n-1})$$\end{document} (the condition introduced by Grafakos and Stefanov). Some of our results are sharp in the sense that the underlying assumptions are the best known conditions for the boundedness of corresponding maximal operators.
引用
收藏
页码:679 / 711
页数:32
相关论文
共 50 条
  • [1] Jump and Variational Inequalities for Rough Operators
    Ding, Yong
    Hong, Guixiang
    Liu, Honghai
    JOURNAL OF FOURIER ANALYSIS AND APPLICATIONS, 2017, 23 (03) : 679 - 711
  • [2] Weighted jump and variational inequalities for rough operators
    Chen, Yanping
    Ding, Yong
    Hong, Guixiang
    Liu, Honghai
    JOURNAL OF FUNCTIONAL ANALYSIS, 2018, 274 (08) : 2446 - 2475
  • [3] Jump and Variational Inequalities for Singular Integral with Rough Kernel
    Chen, Yanping
    Yang, Liu
    Qu, Meng
    ACTA MATHEMATICA SINICA-ENGLISH SERIES, 2025, 41 (01) : 149 - 168
  • [4] Jump and variational inequalities for hypersingular integrals with rough kernels
    Chen, Yanping
    Gong, Zhenbing
    JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2022, 512 (02)
  • [5] Jump and Variational Inequalities for Singular Integral with Rough Kernel
    Yanping Chen
    Liu Yang
    Meng Qu
    Acta Mathematica Sinica,English Series, 2025, (01) : 149 - 168
  • [6] JUMP AND VARIATIONAL INEQUALITIES FOR AVERAGING OPERATORS WITH VARIABLE KERNELS
    Gong, Zhenbing
    Chen, Yanping
    Tao, Wenyu
    COMMUNICATIONS ON PURE AND APPLIED ANALYSIS, 2021, 20 (05) : 1851 - 1866
  • [7] Variational inequalities for the commutators of rough operators with BMO functions
    Chen, Yanping
    Ding, Yong
    Hong, Guixiang
    Liu, Honghai
    SCIENCE CHINA-MATHEMATICS, 2021, 64 (11) : 2437 - 2460
  • [8] Variational inequalities for the commutators of rough operators with BMO functions
    Yanping Chen
    Yong Ding
    Guixiang Hong
    Honghai Liu
    ScienceChina(Mathematics), 2021, 64 (11) : 2437 - 2460
  • [9] Variational inequalities for the commutators of rough operators with BMO functions
    Yanping Chen
    Yong Ding
    Guixiang Hong
    Honghai Liu
    Science China Mathematics, 2021, 64 : 2437 - 2460
  • [10] Weighted Jump and Variational Inequalities for Hypersingular Integrals with Rough Kernels
    Yanping Chen
    Zhenbing Gong
    Frontiers of Mathematics, 2023, 18 : 395 - 415