Selforthogonal modules with finite injective dimension

被引:0
|
作者
Zhaoyong Huang
机构
[1] Beijing Normal University,Department of Mathematics
来源
关键词
injective dimension; selforthogonal modules; cotilting (bi) modules; homologically finite subcategories; left orthogonal dimension;
D O I
暂无
中图分类号
学科分类号
摘要
The category consisting of finitely generated modules which are left orthogonal with a cotilting bimodule is shown to be functorially finite. The notion of left orthogonal dimension is introduced, and then a necessary and sufficient condition of selforthogonal modules having finite injective dimension and a characterization of cotilting modules are given.
引用
收藏
页码:1174 / 1181
页数:7
相关论文
共 50 条
  • [21] Weak injective covers and dimension of modules
    Z. Gao
    Z. Huang
    Acta Mathematica Hungarica, 2015, 147 : 135 - 157
  • [22] STRONG INJECTIVE (PROJECTIVE) DIMENSION OF MODULES
    PAPP, Z
    ARCHIV DER MATHEMATIK, 1974, 25 (04) : 354 - 360
  • [23] Approximations of injective modules and finitistic dimension
    Huard, F.
    Smith, D.
    COMMUNICATIONS IN ALGEBRA, 2021, 49 (09) : 4088 - 4091
  • [24] FINITENESS OF GORENSTEIN INJECTIVE DIMENSION OF MODULES
    Khatami, Leila
    Tousi, Massoud
    Yassemi, Siamak
    PROCEEDINGS OF THE AMERICAN MATHEMATICAL SOCIETY, 2009, 137 (07) : 2201 - 2207
  • [25] DIMENSION THEORY FOR NONSINGULAR INJECTIVE MODULES
    GOODEARL, KR
    BOYLE, AK
    MEMOIRS OF THE AMERICAN MATHEMATICAL SOCIETY, 1976, 7 (177) : R5 - 112
  • [26] WEAK INJECTIVE COVERS AND DIMENSION OF MODULES
    Gao, Z.
    Huang, Z.
    ACTA MATHEMATICA HUNGARICA, 2015, 147 (01) : 135 - 157
  • [27] On large selforthogonal modules
    D'Este, Gabriella
    COMMENTATIONES MATHEMATICAE UNIVERSITATIS CAROLINAE, 2006, 47 (04): : 549 - 560
  • [28] TILTING MODULES AND DOMINANT DIMENSION WITH RESPECT TO INJECTIVE MODULES
    Adachi, Takahide
    Tsukamoto, Mayu
    QUARTERLY JOURNAL OF MATHEMATICS, 2021, 72 (03): : 855 - 884
  • [29] A dichotomy for the injective dimension of F-finite F-modules and holonomic D-modules
    Switala, Nicholas
    Zhang, Wenliang
    COMMUNICATIONS IN ALGEBRA, 2019, 47 (06) : 2525 - 2539
  • [30] FINITE WEAK AND INJECTIVE DIMENSION
    CHOUINARD, LG
    PROCEEDINGS OF THE AMERICAN MATHEMATICAL SOCIETY, 1976, 60 (OCT) : 57 - 60